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ABSTRACT

MODULAR SEMANTICS AND METATHEORY FOR LLVM IR

Euisun Yoon

Stephan A. Zdancewic

The appealing guarantees of formally verified software comes in tandem with the high cost of verification.

To reduce the cost of formal verification, modularity is crucial because it eases both the elaboration and

reuse of proofs. This thesis focuses on developing a modular semantics and metatheory for realistic low-

level languages, with a focus on LLVM IR. First, we define VIR, a modular and executable semantics for a

large sequential subset of LLVM IR, which is based on layered, monadic interpreters. Unlike a traditional

small-step semantics, VIR has an executable semantics which can be extracted into an executable definitional

interpreter. Second, we develop a formal metatheory for reasoning about layered interpreters, giving an

extensible theory for lifting interpreters and structural rules, characterizing interpretable monads and

a relational reasoning framework for reasoning about equivalences across interpretation. Finally, we

develop a relational separation logic framework for verifying program transformations on VIR, with a fresh

perspective on verifying transformations with external calls.
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Chapter 1

Introduction

With great computational power comes great responsibility. The history of computing unveiled the cost

of errors in safety-critical systems. In the 1980s, the Therac-25 radiation therapy machine administered

approximately 100 times the intended dose of radiation due to a software bug, resulting in lethal radiation

poisoning. In 1996, an integer overflow error led to the self-destruction of Ariane flight V88 [LL97], leading

to an estimated loss of $370 million USD. In 2018, Meltdown [LSG+18] and Spectre [KHF+19] was discovered,

showcasing that new classes of vulnerabilities in widespread commercial microprocessors can be found

in the modern day. The reliability of systems is imperative, especially in the ever-evolving landscape of

computing.

The pursuit of reliability has led to the development of formal methods. In complex systems, software

bugs occur despite intensive testing, causing erroneous program behavior at runtime or introducing subtle

bugs that are difficult to track down. The consequences can be negligible for low-assurance software, but

safety-critical systems need a guarantee that it will be bug-free. Formal methods, such as model checking

[ELN+13, Lam99], static analysis [APH+08], and proof-carrying code [Nec97], give mathematical models to

the correctness of program behavior. It gives a robust specification, analysis, and verification of software

systems. Among these technologies, formal verification gives a strict form of mathematical certainty that is

suitable for critical software.

Formal verification can demonstrate the absence of bugs in programs, and this rigor is especially useful

for high-assurance systems. Formal verification is the process of givingmachine-checked formal proofs about

the behavioral correctness of programs. A formal proof in a logical system is a sequence of propositions that

is derived from a set of axioms and rules of inference. The logical system can be seen as a meta-language for

mathematical proofs, and its rules of inference can be written as a program. Theorem provers are software

that decides the validitiy of proofs, where its kernel represents the logical system, and proofs are represented

as decidable programs that are validated in the kernel.

CompCert [Ler09], the first formally verified optimizing C compiler, demonstrated that mechanical
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verification is possible and essential for showing the correctness of realistic software. For its mechanized

proofs, CompCert used the Coq proof assistant both for programming the compiler and for proving its

soundness. A study by Yang et al. [YCER11] uncovered major bugs present in mainstream compilers such as

GCC and LLVM, but CompCert was found to be “seemingly unbreakable”, where bugs were only discovered

in unverified parts of the compilation chain. Since its development, various verification projects and tools

have emerged, such as the CertiKOS certified operating system [GSC+16], a verified web server [KLL+19],

the verified software toolchain for C [App11], and the CakeML bootstrapped certified compiler [KMNO14].

The appealing guarantees of formally verified software come in tandemwith the high cost of verification.

To reduce the cost of formal verification,modularity is crucial because it eases both the elaboration and

reuse of proofs. This thesis focuses on developing amodular semantics and metatheory for realistic

low-level languages, specifically LLVM IR.

1.1 Modular Verification for LLVM IR

The LLVM compiler infrastructure is an attractive target for formal verification. It was initially developed

as a research tool with the goal of exploring advanced compiler optimizations and modern compilation

techniques. The LLVM framework has since evolved into a robust compiler infrastructure that is widely

used in both academic and commercial settings. One of the key strengths of LLVM is its portability—

the framework is designed to be platform-independent, making LLVM a versatile choice for compiler

development. LLVM’s portability is achieved through its intermediate representation (IR), which acts as

a common language that can be used by different front-ends and back-ends. This dissertation builds a

modular foundation for reasoning about program transformations in LLVM IR.

The high-level contributions of this dissertation are the following:

• A modular and executable semantics for the sequential semantics of LLVM IR, based on layered,

monadic interpreters.

• A formal metatheory for reasoning about layered interpreters, giving an extensible theory for lifting

interpreters and structural rules.

• A relational separation logic framework for verifying program transformations which has modular
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reasoning about state, with a fresh perspective on verifying transformations with external calls.

Each of these contributions are divided into parts, which are described further below.

Part I. A Layered Semantics. VIR, A modular and executable formal semantics for LLVM IR.

Formalizing and understanding the semantics of LLVM IR is a substantial effort, and an area of active

research [ZNMZ12, LKS+17, KKS+18, LG20b]. The first mechanized formal semantics of LLVM IR, Vellvm

[ZNMZ12], was based on a small-step operational semantics, a similar approach to CompCert. During

my Ph.D., I have contributed to developing a novel semantics of LLVM IR: VIR, a modular semantics for

LLVM IR which gives a reference interpreter for free. The modular semantics constructs a separation of

concerns between different side-effects of the language. Unlike a traditional small-step semantics, VIR has

an executable semantics which can be extracted into an executable definitional interpreter. The extracted

interpreter removes the additional burden of maintaining and proving the correspondence between the

formal semantics and interpreter.

Part II. A Layered Equational Framework. eqmR, An extensible metatheory for layered semantics.

The VIR semantics uses layered interpreters, which give a modular definition for the semantics of LLVM

IR. When structuring a semantics as complex as LLVM IR, interpretation takes place in layers: several

interpreters are successively composed, each handling different side-effects of the language. There are

issues that arise when building and reasoning about complex interpreter stacks, which I have resolved by

characterizing a rich class of interpretable monads and a relational reasoning framework for reasoning

about equivalences across interpretation.

Part III. A Separation Logic. Velliris, A relational separation logic framework for verifying program

transformations in LLVM IR.

In Part I, demonstrated proofs of optimizations reasoned only about control flow and did not involve

stateful transformations. For larger pieces of code, or for optimizations involving state change, proofs of

optimizations become quickly excruciating without a method to support localized reasoning about state. In

fact, one could not use the VIR semantics to adequately reason about larger software because it was flawed:

it assumed external function calls do not change state. I have developed a separation logic framework

for verifying program transformations that resolves these concerns. It is based on the Iris framework
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[JKJ+18], particularly in the style of Simuliris [GSS+22], and extends the semantics of external calls for VIR.

In particular, I developed logical specifications of external calls with LLVM IR function attributes, which

specify the possible memory effects of the call-site or function. This results in a modular logical framework

for reasoning about stateful LLVM IR programs, and a novel method of proving program transformations

correct under the presence of external calls.

1.1.1 Credits

This thesis work is joint work with many collaborators, as listed below, each tied to a publication or a work

in preparation for submission.

• Part I: Yannick Zakowski, Calvin Beck, Irene Yoon, Ilya Zaichuk, Vadim Zaliva, and Steve Zdancewic.

Modular, Compositional, and Executable Formal Semantics for LLVM IR. Proceedings of the ACM on

Programming Languages, 5(ICFP), 2021b.

• Part II: Irene Yoon, Yannick Zakowski, Steve Zdancewic. Formal Reasoning About Layered Monadic

Interpreters. Proceedings of the ACM on Programming Languages, 6(ICFP):254–282, Aug 2022. ISSN

2475-1421. doi: 10.1145/3547630.

• Part III: Irene Yoon, Simon Spies, Lennard Gäher, Youngju Song, Derek Dreyer, Steve Zdancewic.

Velliris: A Relational Separation Logic for LLVM IR. (In submission.)

1.1.2 Note on Mechanization

All results in this dissertation have been mechanized in the Coq proof assistant and are open-source software.

Each part consists of substantial new pieces of mechanized proofs, and are available as a software artifact

tied to the publication corresponding to each part.1 Part I: ∼30K LOC, Part II: ∼10K LOC (without the ∼8K

LOC case study), and Part III: ∼30K LOC.2 My personal technical contributions are the following: for Part I,
1Part I: https://zenodo.org/records/4777179, Part II: https://zenodo.org/records/6913915, and Part III is in preparation for artifact

submission, and its DOI will be available publicly along with the publication of Part III.
2Lines of code using the cloc tool, disregarding mechanization not relevant to this thesis. Since size and complexity of software

cannot be measured solely with lines of code, we present this metric here only as an accessible measure of proof effort. All technical
details necessary to understanding this dissertation are typeset.
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proofs related to memory and pick events. The variant of VIR semantics discussed in this dissertation also

diverges slightly from the presentation in Zakowski et al., as described in Part I. For Part II, I am the lead

developer, and for Part III, I am responsible for the complete mechanized proof.
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Chapter 2

Background: Monadic Interpreters and Interaction Trees

Since their inception, monads and monadic interpreters have been recognized as appealing and mathe-

matically elegant ways to define programs and their semantics, especially in the presence of I/O, state,

nondeterminism, failure, or other effects [Mog89a, Ste94, LH00, LHJ95]. The monad laws, suitably ex-

tended with domain-specific equations that capture the semantics of effects, enable reasoning about the

equivalence of monadic programs, and, more generally, yield powerful relational program logics (such as

Dijkstra monads [AHM+17, MAA+19, MHRVM20]) that can be used to prove properties ranging from the

correctness of program optimizations to information-flow noninterference [Ben04].

It is no surprise, then, that when it comes to formalizing the behavior of complex language semantics

or the behavior of interactive systems, monads play a crucial role. They are particularly well suited

for defining the semantics of effects when the metalanguage is pure and total, which is the case when

embedding a language semantics into dependent type theory, such as in Coq. Moreover, by working

with free monads [Swi08] and monadic interpreters, one can obtain a flexible, general-purpose reasoning

framework for effectful computations. Variations of this idea have appeared throughout the literature, for

instance as the program monad in the FreeSpec project [LRGCH18], as I/O-trees [HS00], and as McBride’s

general monad [McB15].

In this dissertation, we focus on interaction trees [XZH+20] (ITrees), a recent realization of this approach

as a Coq library. Interaction Trees [XZH+20] (ITrees) are a data structure that represents effectful and

potentially divergent computations. ITrees let us define (in Coq) domains for building compositional

(denotational) semantics of languages; they modularize the effects of such a semantics while still retaining

executability.

ITrees are defined as a coinductive variant of the freer monad [KI15] and are also closely related to

resumption monads [PG14]. The core data structure, itree E, represents a computation as a possibly-infinite

tree with nodes labeled by events e drawn from an event signature E. An event e can be thought of as

a point at which the computation interacts with its environment, allowing the environment to supply a
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response r. The node corresponding to e in the ITree also has the continuation of the computation, given

as a function of r.

2.1 Interaction Trees: A Free Monad Supporting General Recursion

Interaction Trees are a data structure for representing computations interacting with an external environ-

ment through visible events. It has a coinductive datatype, modeling potentially diverging computations.

Unlike other ways of specifying semantics in Coq (e.g. relational operational semantics), ITrees can be

extracted into executable programs.

The definition of the ITree datatype, as well as the type signatures of its main combinators, are

shown in Figure 2.1.3 The datatype takes as its first parameter a signature—described as a family of types

E : Type → Type—that specifies the set of interactions the computation may have with the environment.

The Vis constructor builds a node in the tree representing such an interaction, followed by a continuation

indexed by the return type of the event. The second parameter, R, is the result type, the type of values that

the computation may return if it halts. The constructor Ret builds such a pure computation, represented as

a leaf. Finally, the Tau constructor models an internal, non-observable step of computation, allowing the

representation of silently diverging computations; Tau is also used for guarding corecursive definitions.

ITrees are equipped with four main primitive combinators. As expected, itree E forms a monad at any

signature E: pure computations can be embedded with ret, and computations can be sequenced with bind.

The trigger e combinator builds the minimal computation performing the event e, which immediately

returns the answer from the environment.4 Finally, ITrees support fixed-point combinators such as iter

which encodes terminal recursion.

To illustrate how to model computations with ITrees, consider a signature describing printing on one

hand, and interaction with a single memory cell storing a natural number on the other. The cell can be read

or updated, and values can be sent to the external printer: notice how each event specifies the nature of the

answer it expects from the environment in the index type.
3The signature of ITrees is presented with a positive coinductive datatype for expository purposes. The actual implementation

is defined in the negative style.
4In Section 5.2, we introduce a more general version of trigger, and the overloading is handled by module namespaces (i.e.

this ITree-specific trigger will be referred as ITree.trigger)
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CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R) (* computation terminating with value r *)
| Tau (t: itree E R) (* "silent" tau transition with child t *)
| Vis {A: Type} (e : E A) (k : A → itree E R). (* event e yielding an answer in A *)

Notation "E { F" := (∀ X, E X → F X).
(* Embedding of pure computations *)
Definition ret {E : Type → Type} {R : Type} (v : R) : itree E R.
(* Sequencing computations *)
Definition bind {E : Type → Type} {T U : Type} (u : itree E T) (k : T → itree E U) : itree E U.
(* Atomic itrees triggering a single event. *)
Definition trigger {E : Type → Type} : E { itree E.
(* Fixed-point combinator *)
Definition iter {E : Type → Type} {R I: Type} (body : I → itree E (I + R)) : I → itree E R.

Figure 2.1: Interaction trees: definition and type signature of its main combinators

Variant printE :=
| Print : nat → printE unit.

Variant cellE :=
| Get : cellE nat
| Put : nat → cellE unit.

A computation that writes the value 3 to the cell, reads the content of the cell, and prints it to stdout

can be represented as follows:5

_ � trigger (inr1 (Put 3));; x � trigger (inr1 Get);; trigger (inl1 (Print x))

This computation has type itree (printE +' cellE) unit, where +' is the disjoint sum operator.

ITrees are an implementation of the freer monad with a coinductive model of divergence. The events

contained in a tree are uninterpreted; they assume no predetermined semantics. For instance, the traditional

algebraic law ensuring that the Get operation in the previous example should return 3 is not accounted

for at this stage. Such semantics of the effects manipulated is given in a separate step that enriches the

structure by interpreting events into appropriate monads.

The notion of equivalence of computations over interaction trees (before interpretation) is a weak

bisimulation observing the uninterpreted events and the returned values. This relation is referred to as

equivalence up-to taus, or eutt for short, and ensures co-termination and trace equivalence. Congruence,

monadic, and iterative laws are proved with respect to eutt.

The iterative laws used in ITrees, which imply that continuation trees of type A → itree E B form a

traced monoidal category [BÉ93], can be also generalized for any arbitrary monad. It corresponds to Kleisli

arrows (i.e. functions of type A → M B given a monad M) forming a traced monoidal category. We call any

such monad which satisfies the iterative laws an iterative monad.
5We write (x � t;; k) and t »= k as notations for (bind t (fun x ⇒ k)) and (bind t k).
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As a Coq library, ITrees come with a rich equational theory of equivalences up-to-tau, i.e. up-to the

weak bisimulation that observes the uninterpreted events performed by the computations, the pure values

they returned, and their potential divergence. This notion of weak equivalence is central to the verification

of correctness of program transformations.

2.1.1 Monadic Implementation of Effects

The modularity of ITree-based semantics is embodied by the interp function. Through interp, a handler,

which maps events into an iterative monad, can be freely lifted to a whole tree, essentially folding over the

tree to produce a monadic computation.

To illustrate this idea, consider a handler that implements the memory cell events via a state monad,

while leaving print events as uninterpreted.
Definition handle_cell : printE +' cellE { stateT nat (itree printE) :=
fun _ e n ⇒ match e with

| inl1 (Print x) ⇒ trigger Print x;; Ret (n, tt)
| inr1 Get ⇒ Ret (n, n)
| inr1 (Put m) ⇒ Ret (m, tt)
end.

This handler gives a semantics to printE and cellE events through pattern matching on the sum type.

Such handlers can then be lifted by interp.
Definition interp_cell : itree (printE +' cellE) { stateT nat (itree printE) :=
interp handle_cell.

In particular, computations for which all events are interpreted into an executable structure can be extracted

as (potentially divergent) executable interpreters.

Compositional Semantic Combinators ITrees are monads and they support rich fixed point combi-

nators, allowing for compositional definitions of a wide range of semantics. We write ret 𝑟 for the pure

monadic “return” operation; the bind operator composes two ITrees sequentially. We write 𝑥 ← 𝑡 ;; 𝑘 (𝑥)

for bind 𝑡 (𝜆𝑥 . 𝑘 (𝑥)). The trigger 𝑒 operator, defined by trigger 𝑒 ≜ Vis 𝑒 (𝜆𝑥 . Ret 𝑥) invokes the

event 𝑒 , yielding the answer from the environment.

The event signatures used by ITrees compose—a feature we exploit heavily in VIR. Given two event

type 𝐸 and 𝐹 , we can form their disjoint union 𝐸 ⊕ 𝐹 . Intuitively, an ITree of type itree(E ⊕ F) R can

trigger events from either 𝐸 or 𝐹 .
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Fixed-point combinators allow for modeling loops and recursive programs. The iter combinator

allows for conveniently modeling iteration and tail recursive calls. Consider its type: iter (𝑏𝑜𝑑𝑦 : 𝐴→

itree 𝐸 (𝐴⊕𝐵)) : 𝐴→ itree 𝐸 𝐵. Here,𝐴 can be thought of as the type of an accumulator parameterizing

the body of the iterator. Executing the body may result in either a new accumulator value which signals

that the body should be executed again, or in a value of type B, signaling that the iteration has terminated.

For non-tail-recursive calls, ITrees support a general combinator for mutually recursive computations,

mrec (defs : 𝐷 { itree (D ⊕ E)) : 𝐷 { itree E, 6 where a 𝐷 event represents a call to one of the

mutually defined functions whose behaviors are given by defs. Besides recursive calls in 𝐷 , the functions

might trigger other events, 𝐸. The mrec combinator ties the recursive knot and returns computations only

interacting through 𝐸.

Executable Semantics through Coq Extraction Lastly, ITrees are executable: they can be extracted to

OCaml in order to be run. We exploit this property to derive the reference interpreter for LLVM described

in the next chapter.

6We use 𝐸 { 𝑀 for the polymorphic type ∀𝛼, 𝐸 𝛼 → 𝑀 𝛼 and leave most instantiations of the type parameter implicit.
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Part I

A Layered Semantics for LLVM IR
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Chapter 3

Modular Semantics for LLVM IR

3.1 Introduction

The CompCert C compiler [Ler09] was pivotal to the history of verified compilation, paving the way to

large-scale software verification of real-world programming languages [RPS+19a]. Its introduction provided

the backbone for a variety of innovative technologies [App11, GSC+16, ŠevčíkVN+13, SCK+19, BBG+20]

and energized similar verification efforts for other programming languages [KMNO14, ZNMZ12, BCF+14,

JJKD17].

Most of these projects define the semantics of the programming language using relationally-specified

transition systems given by small-step operational semantics. Roughly speaking, such semantics are defined

by a predicate step : config→ config→ P, where P is the type of propositions and step c1 c2 means that

configuration c1 can transition to configuration c2. Importantly, the relationship between c1 and c2 is

typically not expressed as a function that computes c2 from c1, so this relation isn’t "executable" in the sense

that there is no way to extract code that would implement this step behavior. To say how a program evolves

over time, one needs to consider many small steps: step c1 c2 then step c2 c3, etc., to finally halt at some

configuration or go on stepping forever. From a proof-technique standpoint, these approaches often rely on

(backward) simulations that connect the behavior of one step relation to another relation step′, which

requires carefully crafting elementary simulation diagrams and stitching them together co-inductively to

obtain termination-sensitive results.

These techniques have had widespread success; however, they also have some drawbacks. First, they

often lack compositionality: the desired small-step operational semantics is not usually definable purely by

induction on syntax. Second, and relatedly, they often lack modularity: side effects of the language become

reified in the step relation, often leading to additional components such as program counters, heaps, or

pieces of program text that are needed to define the relation but complicate the invariants needed to reason

about it. Finally, because a relational model is not executable, it is difficult to test the language semantics
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during its development, which is a useful way to validate the model’s correctness. Lack of executability also

precludes the use of tools like QuickChick [LP18]. An alternative is to write painstakingly hand-crafted

interpreters—CompCert [Ler09], Vellvm [ZNMZ12], and JSCert [BCF+14] went to significant lengths in this

regard—but that incurs the additional burden of proving (and maintaining) the correspondence between

the operational semantics and the interpreter.

Compositionality, modularity, and executability are critical to ease the design, development, and upkeep

of a formal language semantics, especially for large “real world” languages whose features are complex and

evolving over time. In this dissertation, we demonstrate how to achieve these properties simultaneously

and at scale: we formalize in Coq a large and expressive subset of the sequential portion of the LLVM. To

do so, we draw on classic ideas about how to structure monadic interpreters [Ste94] and make heavy use of

interaction trees [XZH+20], a recent Coq formalism that provides (1) expressive monadic combinators for

defining compositional semantics, (2) effect handlers for the modular interpretation of effectful programs,

and (3) a coinductive implementation that can be extracted into an executable definitional interpreter.

These features allow for a strong separation of concerns: each syntactic sub-component can be given a

self-contained meaning, and each effect of the language can be defined in isolation via an effect handler.

Moving away from traditional small-step operational semantics to an ITrees-based semantics not only

simplifies the language definition, but also allows us to explore alternative means of proving compiler and

optimization correctness properties. In particular, ITrees support a rich theory of refinement that facilitates

relational reasoning proofs, much in the style of Maillard et al.’s Dijkstra monads [MAA+19], Swierstra

and Baanen’s predicate transformers [SB19] or Benton’s relational Hoare logic [Ben04], letting us prove

program equivalences largely by induction and elementary rewriting. Though some of the relevant theory

was presented in the paper by Xia et al. [XZH+20], nondeterminism in the LLVM IR prompted us to develop

new machinery for working with “propositional interpreters,” a key ingredient needed to establish the

proof of adequacy of the extracted interpreter.

We focus on the LLVM framework [LA04] because it is an attractive target for formal verification: it is

a widely used, industrial-strength codebase; its intermediate representation (IR) provides a comparatively

small and reasonably well-defined core language; and many of its analyses, program transformations, and

optimizations, operate entirely at the level of the LLVM IR itself. Since the LLVM ecosystem supports
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many source languages and target platforms, it is a natural fulcrum to amplify the impact of formal

modeling and verification efforts. Moreover, there is ample existing work that aims to build formal

semantics for (oftentimes just parts of) the LLVM IR. Notable examples include the Vellvm [ZNMZ12,

ZNMZ13], Alive [LMNR15, MN17], Crellvm [KKS+18], and K-LLVM [LG20a] projects, as well as attempts

to characterize LLVM’s undefined behaviors [LKS+17], its concurrency semantics [CV17], and memory

models [KHM+15a, LHJ+18b]. As witnessed by research activity surrounding it, LLVM IR’s semantics isn’t

straightforward to specify, or even necessarily well-defined. Features like poison, undef, and integer–

pointer casts, are complicated to model independently, and even more so together. We believe LLVM IR’s

complexities make it all the more important to formalize. While the semantics we present here is not the

final word on the subject—most notably, the current memory model is not adequate for justifying some

useful LLVM IR optimizations—we believe that we have developed the semantic ingredients needed to

(eventually) define a “complete” model. Moreover, the emphasis we have put into the modularity of our

semantics shall allow us to improve its quality over time to better approach (and react to changes in) “the”

LLVM IR semantics.

The new VIR (Verified IR) development described here aims to fill the same niche as Vellvm, sharing

that project’s goal of being a platform for verified LLVM optimizations and compilers, but incorporating

the insights of the works mentioned above and built using modern proof engineering-techniques—in

particular, ITree-based monadic semantics form its core specification technology. While the work by

Xia et al. demonstrated ITrees in a “toy” setting, here we aim to use them at scale—our treatment of

LLVM’s phi-nodes, mutually recursive functions, undef values, pointers, and other rich data types is all

new in comparison. As such, our results also provide a novel and useful recipe for how to formalize large,

complicated language semantics in theorem provers based on dependent type theory. In summary, this

dissertation makes several contributions:

VIR Design We present VIR, a compositional, modular and executable formal semantics in Coq for a

realistic sequential subset of LLVM IR. The semantics exhibits a principled structure, easing its development.

VIR’s syntax is structurally represented as interaction trees that distinguish different effects: local environ-

ment, stack, global identifiers, memory model, nondeterminism, external function calls, etc.. These effects

are implemented by independent event handlers in the style of algebraic effects [PP03a] and composed
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together with no additional syntax. We give a novel semantic model that is defined in terms of a fully

“propositional” specification to capture the nondeterministic quirks of the language, but we also implement

an executable reference interpreter that shares almost all of the code with the propositional semantics.

Sections 3.2–3.3 describe this design, introducing the requisite background about ITrees along the way.

Metatheory We demonstrate how the compositional semantics gives rise to a primitive, but very ex-

pressive relational proof method, enabling termination-sensitive refinements of programs to be established

without the use of explicit simulation diagrams or coinduction. The model justifies a definition of “correct

program transformation” that can be proved at different levels of abstraction, leveraging the modularity

of the semantics. In particular, programs that do not involve non-deterministic features can be reasoned

about from the perspective of a deterministic semantics. This general-purpose proof infrastructure—many

of our metatheoretic results apply to interaction tree semantics broadly and are not specific to VIR—also

lets us prove the correctness of the VIR executable interpreter with respect to the model almost for free.

Section 4.1 covers these results.

As alluded to above, there is a large body of prior work from which we draw inspiration. Section 4.3

compares our approach to the closest.

3.2 VIR Syntax

The primary focus of this dissertation is the use of monadic interpretation of interaction trees to define and

reason about a compositional, modular, and executable semantics for a “real-world” programming language

as exemplified by LLVM IR. Our formal development7 covers most features of the core sequential fragment

of LLVM IR 11.0.0 as per its informal specification8, including: the basic operations on 1-, 8-, 32-, and

64-bit integers, Doubles, Floats, structs, arrays, pointers, and casts; undef and poison; SSA-structured

control-flow-graphs, global data, mutually-recursive functions, and support for intrinsics. The main features

that are currently unsupported are: some block terminators (switch, resume, indirect branching, invoke),

the landing_pad and va_arg instructions, architecture-specific floats and opaque types. The list of

supported intrinsics is small, but user-extensible. From a semantics perspective, the main limitation of VIR
7Available at https://github.com/vellvm/vellvm
8https://llvm.org/docs/LangRef.html
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𝜏 ::= i64 | i1 | [𝜏] | 𝜏∗
id, bid ::= string

exp ::= @id | %id | i64 | i1 | undef𝜏 | exp op exp
| GEP (𝜏1, exp, 𝑙𝑖𝑠𝑡 exp)

instr ::= exp | call (exp, 𝑙𝑖𝑠𝑡 exp) | alloca (𝜏)
| load (𝜏, exp) | store (exp, exp)

term ::= branch (exp, bid, bid) | return (exp) | . . .
phi ::= Φ (𝑙𝑖𝑠𝑡 (bid, exp))

block ::= {entry : bid; phis : 𝑙𝑖𝑠𝑡 (id, phi);
code : 𝑙𝑖𝑠𝑡 (id, instr); term : term}

cfg ::= {name : id; args : 𝑙𝑖𝑠𝑡 bid; entry : id; body : 𝑙𝑖𝑠𝑡 block}
mcfg ::= mrec (cfg , . . . , cfg)

Figure 3.1: A minimal subset of VIR’s syntax

has to do with the interaction between undefined values and the memory model: our implementation is

sound, but prohibits the verification of some LLVM IR optimizations. See the discussions in Section 3.3.3

and 7.3 for more about these considerations.

For expository purposes, we restrict our presentation to a representative subset of VIR.

3.2.1 Syntax

VIR’s syntax is shown on Figure 3.1. At the top-level, a VIR program is a mutually recursive cfg (mcfg)

defined as a set of mutually recursive functions. Each function is a single control-flow-graph (cfg), which is

a record that holds a name, formal variables binding its arguments, a block identifier as its entry point, and

a list of blocks as its operational content.

Blocks are records holding an entry label, Φ−nodes, a list of instructions, and a terminator. The Φ−nodes

are used to maintain SSA form [CFR+91], dynamically assigning different values to a variable depending on

the identity of the predecessor block in the control flow. The 𝑐𝑜𝑑𝑒 field contains a list of instructions (instr)

paired with registers (id) destined to receive the value computed by the associated instruction. The code is

set in a three-address-style format and intended to be executed sequentially after the Φ−nodes are set. The

instructions we consider here are the evaluation of expressions, function calls, and memory operations

such as allocation, loads, and stores. Finally, a terminator determines how the control flow should continue

after a block. We include conditional branches and return statements as terminators.
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We consider a subset of expressions (exp) supported by VIR: global (@𝑖) and local (%𝑖) identifiers, 64-bit

integers, 1-bit integers, basic arithmetic operators (ranged over by op), and “get element pointer” (GEP)

operations, used to access components in array-like data structures. As a consequence, VIR types 𝜏 include:

i64, i1, arrays [𝜏], and pointers 𝜏∗.

3.2.2 Dynamic Values

The semantics of VIR relies upon the domain of dynamic values that the language can manipulate. The

core of these dynamic values are the so-called defined values.

𝑑𝑣 ∈ V ::= none | 𝑖 | 𝑔 | 𝑎 | [list (V)] | poison

The void value, none, is a placeholder for operations with no meaningful return values. VIR supports 1, 8, 32

and 64 bit integers9, but in this dissertation we only consider 64-bit integers (𝑖) and 1-bit integers (𝑔). Memory

addresses (𝑎) are given an abstract type Addr to allow for plugging memory models with different pointer

representations into our semantics, a feature facilitated by the modularity of our semantics—Section 3.3.3

describes the implementation of our main memory model. VIR supports all of LLVM IR’s structured values,

but for simplicity we present only arrays, noted as [_].

Infamously, LLVM IR supports poisoned values (poison) representing a deferred undefined behav-

ior [LKS+17]. Deferred UB is instrumental for aggressive optimizations, but a semantic subtlety. The

poison value is a tainting mark: it propagates to all values that depend on it, so equations such as

poison + poison ≡ 2 ∗ poison ≡ poison hold true. Although accounting for poison entails numerous

semantic peculiarities, poison is modeled as its own defined value.

In contrast, the undef𝜏 value, a different model for deferred undefined behaviors supported by LLVM IR,

admits a set semantics, representing all defined values of a given type 𝜏 . Operations that need to know the

specific defined value at play behave non-deterministically over the set of values when acting upon undef.

However, “reading” the same instance of an undef𝜏 value twice is not guaranteed to return the same value:

undefi64 + undefi64 ≡ undefi64 holds true, but undefi64 + undefi64 . 2 ∗ undefi64 is an inequality, as the

right hand side cannot be odd.
9We use CompCert’s finite integers in our development.
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To account for these peculiarities, we introduce under-defined values (uv ):

uv ∈ V𝑢 ::= ↑ V | undef𝜏 | opV𝑢 V𝑢

Under-defined values are a superset of defined values—we write ↑ for the corresponding injection—but they

also contain the special value undef𝜏 (we omit the subscript 𝜏 when the type is unimportant). Extending

the semantics of arithmetic operations to a set interpretation of undef𝜏 would prevent us from interpreting

two successive “reads” to an under-defined value differently. Instead, we can manipulate “symbolic” values

built from any supported VIR arithmetic operator overV𝑢 .

3.3 A Modular LLVM IR Semantics

The toolbox provided by ITrees suggests a methodology for building denotational domains for a wide

variety of programming languages. Given a syntax Lang, we proceed in three steps:

1. Identify the events E a program 𝑝 ∈ Lang may trigger;

2. By induction on Lang, use the ITree combinators to compute a representation of programs as elements

of itree E 𝐴, where 𝐴 is an appropriate result type;

3. Define a handler for each family of events in E and use those to interpret the result of step 2.

The first step identifies the effects that programs in Lang may have, and abstracts them via a typed

interface of events. The second step internalizes the control-flow and the potential divergence of Lang. The

last step breathes life into the modular semantics, giving each event meaning, and completes the picture by

combining these interpretations of effects.

This section applies this recipe to build our formal model of VIR. We inventory VIR’s effects in Sec-

tion 3.3.1 and derive from it the sets of events we manipulate. Section 3.3.2 describes how to represent

each syntactic piece of VIR as an interaction tree, building up to the representation of mcfgs. Section 3.3.3

defines the concrete semantics of each category of effects through the definition of the handler for their

corresponding events. Finally, Section 3.3.4 ties every component together and tackles the initialization of

the memory to obtain the complete semantic model of VIR.
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Global and local state Internal, external, and intrinsic calls
G ≜ GRdV (𝑙) | GWr( ) (𝑙, 𝑣) C ≜ CallV𝑢 (𝑎,𝑢𝑎𝑟𝑔𝑠)
L ≜ LRdV𝑢 (𝑙) | LWr( ) (𝑙, 𝑣) CE ≜ CallEV (𝑎, 𝑑𝑎𝑟𝑔𝑠)
SL ≜ LPush( ) (𝑎𝑟𝑔𝑠) | LPop( ) I ≜ IntrinsicV (𝑓 , 𝑑𝑎𝑟𝑔𝑠)
Memory model interactions
M ≜ MPush( ) | MPop( ) | LoadV𝑢 (𝜏, 𝑙) | Store( ) (𝑎, 𝑣) |

AllocaV (𝜏) | GEPV (𝜏, 𝑣, 𝑣𝑠) | PtoIV (𝑎) | ItoPV (𝑖)

Nondeterminism and UB
P ≜ PickV (𝑢𝑣) U ≜ UB∅

Failure and debugging
F ≜ Throw∅ D ≜ Debug( ) (𝑚𝑠𝑔)

Figure 3.2: VIR events. (Superscripts indicate return types.)

3.3.1 An Inventory of LLVM’s Events

Figure 3.2 depicts the eleven categories of events that can be triggered by a VIR program. At this point we

specify the types of the events, which constrain the types of the handlers that will concretely implement

their semantics.

Global state and local state events, G and L respectively, describe reads and writes to the global and local

environments. The global environment is a read-onlymap that sends global identifiers to their corresponding

memory addresses, and is written to only at its initialization. In contrast, the local environment represents

stack frames for function calls, and is mutated throughout execution.

Local stack events, SL , provide a fresh local environment for each function call. The LPush( ) event

pushes a fresh local environment initialized with an association list of variables to V𝑢s, the arguments

passed to the function. The LPop( ) event pops the stack frame when a function returns. Separating L

and SL into two distinct domains of events allows for the denotation of functions to be oblivious to the

existence of this stack of states, as will become apparent in Section 3.3.3.

Memory events,M, are richer. A program can MPush( ) or MPop( ) a (memory) frame within which

new storage can be dynamically allocated via the AllocaV (𝜏) event. Memory cells can be accessed via

Store( ) (𝑎, 𝑑𝑣) and LoadV𝑢 (𝜏, 𝑙). Note that our model stores defined values in memory, but loads may

return undefined ones (e.g. if an allocated, but uninitialized cell is read). GEPV (𝜏, 𝑑𝑣, 𝑑𝑣𝑠) computes a pointer

within an aggregate structure. Finally, pointer–integer casts, PtoIV (𝑎), and, reciprocally, ItoPV (𝑖), are

supported.
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VIR supports internal calls, external calls, and calls to “intrinsics.” Internal calls, C, should be the result

of the denotation of the corresponding function: it can therefore return any V𝑢 . External calls, CE , are

not resolved internally—they model invocations of OS or library code—and can be implemented by any

external means: they only process and return defined values inV . Intrinsics are LLVM’s mechanism for

lightweight language extensions: their names and semantics are standardized, but their addresses cannot

be taken. VIR’s semantics is parameterized by an extensible set of supported intrinsics modeled by events

of type I.

LLVM IR is a non-deterministic language. The VIR semantics implements the undefined value undef𝜏

(recall Section 3.2.2), by manipulating the symbolic under-defined values,V𝑢 , as long as possible. When

the computation nonetheless reaches a point requiring a uniquely determinedV , an oracle, modeled by

PickV (𝑢𝑣) ∈ P events, is invoked to choose a defined value.

A second source of non-determinism comes from undefined behaviors, which represent exceptional

circumstances. If execution leads to undefined behavior, the LLVM semantics says that any behavior may

substitute for this execution. 10 Semantically, this means that we need an event to which we can give any

meaning; this polymorphism is achieved through an event, UB∅ ∈ U, whose returned type is void. We

write raiseUB for the polymorphic triggering of UB∅ .

Finally, Throw∅ ∈ F and Debug( ) (𝑚) ∈ D respectively express dynamic errors and dynamic debug

messages. We write fail for the polymorphic triggering of Throw∅ .

3.3.2 Representing VIR Programs as Interaction Trees

The second step of denotation consists of representing the syntax of VIR as an ITree acting over an interface

built from the previously described events. More specifically, let us define the top-level interface for LLVM

programs:

virE ≜ C ⊕ I ⊕ G ⊕ (SL ⊕ L) ⊕ M ⊕ P ⊕ U ⊕ D ⊕ F

The main purpose of this section is hence to define a function

⟦p⟧mcfg (𝜏 : dtyp) (𝑓 : V) (𝑎𝑟𝑔𝑠 : list (V)) : itree virEV𝑢

10The semantics may interpret an undefined behavior as any computation, but may not alter the past.
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(↑ poison) ⊕ _ = ↑ poison
_ ⊕ (↑ poison) = ↑ poison
(↑ 𝑑𝑣1) ⊕ (↑ 𝑑𝑣2) = ↑ (𝑑𝑣1 +i64 𝑑𝑣2)

𝑢𝑣1 ⊕ 𝑢𝑣2 = 𝑢𝑣1 +i64 𝑢𝑣2

𝑢𝑣1 ⊘ 𝑑𝑣2 = ret (𝑢𝑣1/i64 (↑ 𝑑𝑣2))
(↑ poison) ⊘ _ = ret (↑ poison)

_ ⊘ poison = raiseUB
(↑ 𝑑𝑣1) ⊘ 𝑑𝑣2 = if 𝑑𝑣2 =i64 0

then raiseUB else ret ↑ (𝑑𝑣1/i64 𝑑𝑣2)
Figure 3.3: Binary operations on under-defined values

which, given a mcfg 𝑝 , a return type 𝜏 , the address of the starting function 𝑓 , and a list of arguments 𝑎𝑟𝑔,

internalizes the semantics into a single ITree over the virE interface.

The definition of ⟦_⟧mcfg directly follows the structure of the syntax. In particular, our approach allows

us to easily define the meaning of each syntactic sub-component in complete autonomy, which is a key

feature to enable compositional reasoning about the resulting semantics.

Expressions Expressions are naturally represented as ITrees that return values 𝑢 ∈ V𝑢 . The representa-

tion function, defined inductively over the syntax, is given by:

⟦%𝑖⟧𝑒 = trigger (LRdV𝑢 (𝑖))
⟦@𝑖⟧𝑒 = 𝑑𝑣 ← trigger (GRdV (𝑖)) ;; ret (↑ 𝑑𝑣)

⟦𝑒1 + 𝑒2⟧𝑒 = 𝑢𝑣1 ← ⟦𝑒1⟧𝑒 ;; 𝑢𝑣2 ← ⟦𝑒2⟧𝑒 ;; ret (𝑢𝑣1 ⊕ 𝑢𝑣2)
⟦𝑒1/𝑒2⟧𝑒 = 𝑢𝑣1 ← ⟦𝑒1⟧𝑒 ;; 𝑢𝑣2 ← ⟦𝑒2⟧𝑒 ;;

𝑑𝑣 ← concretize_or_pick(𝑢𝑣2) ;; 𝑢𝑣1 ⊘ 𝑑𝑣

The meaning of a local variable %𝑖 is a computation with the effect of accessing the local environment

to retrieve the value associated to 𝑖 . Thus, at this stage, it is represented by triggering the LRdV𝑢 (𝑖) event,

whose return type is preciselyV𝑢 : once interpreted, this small interaction tree will return a value of the

correct type. A global variable @𝑖 has a similar representation: it triggers the corresponding GRdV (𝑖) event,

whose return type is statically guaranteed to contain defined values. We bind the triggered result to 𝑑𝑣 ∈ V

and inject this bound value into the domain of under-defined values.

Binary operations, like the addition of integers, are represented by taking the ITree representation of

each subexpression 𝑒1 and 𝑒2, binding the results of these computations to 𝑢𝑣1, 𝑢𝑣2 ∈ V𝑢 respectively, and

then performing the basic operation on 𝑢𝑣1 and 𝑢𝑣2 and returning the result. Division, however, is more

complex because division by 0 is undefined behavior. If the denominator is an under-defined value, we

will need to pick a valid concretization, 𝑑𝑣 ∈ V . We use concretize_or_pick for this purpose, which

either injects the denominator intoV if it is already concrete, or triggers a PickV (𝑢𝑣2) event that acts as

an oracle for concretizingV𝑢 values. Note that the basic operations must account for poison and trigger
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undefined behavior via raiseUB when division by 0 occurs, as seen in Figure 3.3.

Instructions LLVM instructions are represented by a pair (id, 𝑖𝑛𝑠) of a side-effectful instruction 𝑖𝑛𝑠 and

an identifier id destined to receive the result of the operation. Their representation function builds upon

⟦_⟧𝑒 , as defined in Figure 3.4.

Representing an operation (id, 𝑒) reduces to calling ⟦𝑒⟧𝑒 and binding its result with the trigger of the

local write LWr( ) (𝑖𝑑,𝑢𝑣). Memory operations require extra care. Consider load (𝜏, 𝑒), that reads from an

address expression 𝑒 of type 𝜏 . The address 𝑢𝑎 resulting from ⟦𝑒⟧𝑒 should be used to trigger the appropriate

memory event. However the memory model can be indexed only by defined memory addresses, and stores

defined values. We therefore resolve any under-definedness in 𝑢𝑎 by picking a valid concretization, 𝑑𝑎 ∈ V ,

of the under-defined value. After getting the concrete address, we need to take care of one last subtlety:

defined values can be poisoned, and attempting to load from such an address is an undefined behavior. This

can be handled with a simple case analysis on theV , which raises aU event if theV is poison. Stores

and allocations follow a similar pattern.

We next turn to call instructions. The distinction between internal and external calls is a property of

the ambient mcfg, and is not relevant to individual cfgs. They are hence both represented as a CallV𝑢 (_, _)

event at the level of instructions, and will be distinguished at the level of mcfgs, as described at the end of

this section. In contrast, the list of supported intrinsics is a parameter of our semantics; they can always

be resolved statically. Hence, a call (𝑓 , 𝑎𝑟𝑔𝑠) instruction is represented by first sequentially interpreting

the list of arguments (𝑎𝑟𝑔𝑠) using a monadic map, mapm . If the function is an intrinsic, arguments are

concretized to defined values and passed to the dedicated I event. Otherwise, the address of the function

is retrieved from its name and passed to a call event. In both cases, the resulting value is bound to the

associated local variable 𝑖𝑑 , as usual.

Denoting straight line code, ⟦_⟧𝑐 , simply sequences the denotation of its instructions using mapm .

Terminators Terminators either return the identity of the next block to be evaluated, or signal the end

of the current function call by returning a value. This dichotomy is reflected in the ITree’s return type, a

disjoint sum of block identifiers and under-defined values (see below). The representation is otherwise as

expected: return (𝑒) evaluates 𝑒 and returns its right injection. A branch (e, 𝑏𝑙 , 𝑏𝑟 ) evaluates 𝑒 and performs

a case analysis on its result. In the first case, the result is a 1-bit integer, and the value is treated as a boolean
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⟦(id, 𝑒)⟧𝑖 = 𝑢𝑣 ← ⟦𝑒⟧𝑒 ;; trigger (LWr( ) (id, 𝑢𝑣))

⟦(id, load (𝜏, 𝑒))⟧𝑖 =
𝑢𝑎 ← ⟦𝑒⟧𝑒 ;; 𝑑𝑎 ← concretize_or_pick(𝑢𝑎) ;;
match 𝑑𝑎 with
| poison⇒ raiseUB
| _⇒ 𝑢𝑣 ← trigger (load (𝜏, 𝑑𝑎)) ;;
trigger (LWr( ) (id, 𝑑𝑣))

⟦(_, Store( ) (𝑒𝑣, 𝑒𝑎))⟧𝑖 =
𝑢𝑣 ← ⟦𝑒𝑣⟧𝑒 ;; 𝑑𝑣 ← concretize_or_pick(𝑢𝑣) ;;
𝑢𝑎 ← ⟦𝑒𝑎⟧𝑒 ;; 𝑑𝑎 ← concretize_or_pick(𝑢𝑎) ;;
match 𝑑𝑎 with
| poison⇒ raiseUB
| _⇒ trigger (Store( ) (𝑑𝑎,𝑑𝑣))

⟦(id, alloca (𝜏))⟧𝑖 = 𝑑𝑣 ←
trigger (AllocaV (𝜏)) ;;
trigger (LWr( ) (↑ id, 𝑑𝑣))

⟦(id, call (𝑓 , 𝑎𝑟𝑔𝑠)⟧𝑖 =
𝑢𝑣𝑠 ← mapm ⟦_⟧𝑒 𝑎𝑟𝑔𝑠 ;;
𝑟𝑒𝑡𝑣 ← [
match is_intrinsics (𝑓 ) with
| Some 𝑠 ⇒
𝑣𝑠 ← mapm (𝜆𝑢𝑣 . concretize_or_pick(𝑢𝑣)) 𝑢𝑣𝑠 ;;
𝑑𝑣 ← trigger (IntrinsicV (𝑠, 𝑣𝑠)) ;;
ret (↑ 𝑑𝑣)

| None⇒
𝑓 ← ⟦𝑓 ⟧𝑒 ;; trigger (CallV𝑢 (𝑢𝑓 ,𝑢𝑣𝑠))] ;;

trigger (LWr( ) (𝑖𝑑, 𝑟𝑒𝑡𝑣))

Figure 3.4: Denoting instructions as ITrees

to decide which branch to take and thus a block identifier is returned. Branching on a poisoned value is

considered an undefined behavior, so a raiseUB is returned. All other cases are considered erroneous.

⟦return (𝑒)⟧𝑡 = 𝑢𝑣 ← ⟦𝑒⟧𝑒 ;; ret (inr 𝑢𝑣)
⟦branch (𝑒, 𝑏𝑙 , 𝑏𝑟 )⟧𝑡 =
𝑢𝑣 ← ⟦𝑒⟧𝑒 ;; 𝑑𝑣 ← concretize_or_pick(𝑢𝑎) ;;
match 𝑑𝑣 with
| 𝑔 ⇒ if 𝑔 =1 1 then ret (inl 𝑏𝑙 ) else ret (inl 𝑏𝑟 )
| poison ⇒ raiseUB
| _ ⇒ fail

Control-flow graphs We next consider the representation of VIR functions, i.e., of cfgs. More generally,

we want to be able to denote open functions—a subgraph of mutually referential, labeled control-flow-graph

blocks that might refer to block labels not in the subgraph—in order to reason compositionally about them.

Therefore, we define the representation of a list of blocks: ⟦bks⟧bks (𝑏 𝑓 , 𝑏𝑠) as a function that takes as an

argument the label 𝑏𝑠 of the source block at which to start the computation, as well as the label 𝑏 𝑓 of the

block visited last. This function loops, using the iter operator (see Chapter 2) combinator to resolve the

control flow of the mutual references among the blocks, until it either finds a return statement, or computes

the label of a block that does not belong to the sub-control flow graph.
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⟦bks⟧bks = iter 𝑏𝑜𝑑𝑦

𝑏𝑜𝑑𝑦 (𝑏 𝑓 , 𝑏𝑠 ) = try 𝑏𝑘𝑠 ←↪ 𝑏𝑘𝑠 [𝑏𝑠 ] with ret (inr (inl (𝑏 𝑓 , 𝑏𝑠 ))) in

𝑟𝑒𝑠 ← (⟦bks .(Φ)⟧
𝑏𝑓

Φ𝑠 ;; ⟦𝑏𝑘𝑠 .(𝑐)⟧𝑐 ;; ⟦𝑏𝑘𝑠 .(𝑡)⟧𝑡 )

match 𝑟𝑒𝑠 with

| inr 𝑑𝑣 ⇒ ret (inr (inr 𝑑𝑣))

| inl 𝑏𝑡 ⇒ ret (inl (𝑏𝑠 , 𝑏𝑡 ))

Above, we write try 𝑥 ←↪ 𝑚𝑣 with 𝑡 in 𝑘 to bind the content of an option value,𝑚𝑣 to 𝑥 in 𝑘 if it is a

Some 𝑐onstructor, and return 𝑡 otherwise. When the partiality is simply internalized in the tree, we also

abbreviate 𝑥 ←↪𝑚𝑣 in 𝑘 for try 𝑥 ←↪𝑚𝑣 with fail in 𝑘 .

One wrinkle is that we need to account for Φ−nodes, which assign to local variables based on the label

of the previously visited block. Additionally, all Φ−nodes need to be executed “in parallel”, due to cycles in

the control flow graph allowing for the right-hand side expressions to depend on the (previous) values of

variables being assigned. Thus, given the label 𝑏𝑖𝑑𝑓 of the previously visited block, we can represent the

computation returning the value to be bound at a given Φ−node:

⟦(id,Φ(args))⟧𝑏𝑖𝑑𝑓

Φ = 𝑜𝑝 ←↪ 𝑎𝑟𝑔𝑠 [𝑏𝑖𝑑𝑓 ] in 𝑢𝑣 ← ⟦𝑜𝑝⟧𝑒 ;; ret (𝑖𝑑,𝑢𝑣)

A list of Φ−nodes then retrieves the association list of identifiers to under-defined values, before

performing the writes.

⟦Φs⟧𝑏𝑖𝑑𝑓

Φ𝑠 = 𝑑𝑣𝑠 ← mapm (⟦_⟧𝑏𝑖𝑑𝑓

Φ ) Φ𝑠 ;;

mapm (𝜆 (𝑖𝑑, 𝑑𝑣) . trigger (LWr( ) (𝑖𝑑, 𝑑𝑣))) 𝑑𝑣𝑠

⟦cfg⟧cfg =
𝑟 ← ⟦cfg.(body)⟧bks (·, cfg.(entry)) ;;
match 𝑟 with
| inr 𝑢𝑣 ⇒ ret 𝑢𝑣
| inl 𝑏𝑖𝑑 ⇒ fail

Defining the representation of a closed cfg (right) is simply a matter of representing its blocks and

interpreting a final label as an error (an invalid jump).11

11Note that it is safe to provide a “dummy” origin block as LLVM IR explicitely prohibits entry blocks of functions to contain
Φ−nodes.
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Mutually Recursive Control-Flow Graphs

⟦mcfg⟧mcfg fundefs 𝑓 𝑎𝑟𝑔𝑠 = mrec 𝑏𝑜𝑑𝑦 (CallV𝑢 (𝑓 , 𝑎𝑟𝑔𝑠))

𝑏𝑜𝑑𝑦 (CallV𝑢 (𝑢𝑓 , 𝑎𝑟𝑔𝑠)) =

𝑑 𝑓 ← concretize_or_pick(𝑢𝑓 ) ;;

match fundefs [𝑑 𝑓 ] with

| Some 𝑓 _𝑑𝑒𝑛 ⇒ 𝑓 _𝑑𝑒𝑛 (𝑎𝑟𝑔𝑠)

| None⇒ 𝑑𝑎𝑟𝑔𝑠 ← mapm (𝜆 𝑣 . concretize_or_pick(𝑣)) 𝑎𝑟𝑔𝑠 ;;

trigger (CallEV (𝑢𝑓 , 𝑑𝑎𝑟𝑔𝑠))

Lastly, we represent mcfgs, i.e. sets of mutually recursive cfgs. The main task is tying the recursive knot

of function calls, similar to the cfg blocks. However, the iter combinator falls short this time: calls are

not necessarily tail recursive. We therefore rely on a more general mrec combinator, to tie the knot for

us by dynamically unrolling function calls. Conveniently, LLVM IR is a first order language: all (internal)

functions are defined at the top-level, as part of the mcfg. We can therefore statically know their global

identifiers, and build an association list12 of type fundefs : list (V ∗ (list (V𝑢) → itree virEV𝑢))

mapping each function address to its ITree representation. As shown below, the body passed to mrec can

therefore simply query this list to know if the function being called is internal, in which case it returns its

representation. Otherwise, it triggers back the call, this time explicitly classified as external.

3.3.3 Handling Events

Section 3.3.2 introduced a compositional representation of VIR in terms of ITrees. The effects captured

by the events contained in these trees do not have a presupposed implementation: we now define their

meaning in a modular way through independent handlers.

As shown in Figure 3.5, the full VIR semantic model is given by a “tower of interpreters” which interpret

events to different levels. Level 0 corresponds to the uninterpreted ITree. Each subsequent level handles

some events using an appropriate instance of interp. For example, the interpreter from Level 0 to Level 1

handles intrinsic events only, whereas by Level 2 both intrinsic events and global events have been handled.

We want to be able to establish that a program 𝑝1 refines a program 𝑝2 in the simplest monad allowing the

refinement to be established.
12Constructing this list happens when initializing the global, top-level state. See Section 3.3.4.
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Figure 3.5: Levels of interpretation

A second major benefit of using handlers is the ability to use different handlers for the same events.

This “plug-and-play” aspect makes it easier to experiment with semantic features, such as alternate memory

models. We also make crucial use of this feature to define both the full VIR semantic model (the left path

through Figure 3.5) and an executable VIR interpreter (the right path). As explained below, the model

accounts for nondeterminism in the VIR semantics by interpreting some events propositionally (i.e., into

sets characterized by Coq predicates), making them suitable for specification but not extraction, whereas

the executable interpreter concretizes the nondeterminism, which is useful for testing and debugging. The

two semantics share most of the interpretation levels, allowing us to easily prove that the implementation

refines the model (see Section 4.1).

The following subsections discuss the successive handlers for VIR’s events. Most of them target state

monads, of which the memory model is the most complex. The handlers for pick events Pand undefined

behaviorsU target the propT𝐸 monad of “propositional sets of computations.”

I: Intrinsics VIR, like LLVM, supports intrinsic functions that extend its core semantics (for instance to

allow for the implementation of new “primitive” arithmetic operations). Such intrinsics are defined by a

map associating each name to a semantic function of type list (V) → V + err, i.e., a pure Coq function

that takes a list ofVs and produces either an error or aV as a result. The handler for intrinsics looks up

the name, and runs the semantic function on the arguments, returning the result (or raising an error if it
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handleI IntrinsicV (𝑓𝑛𝑎𝑚𝑒 , 𝑎𝑟𝑔𝑠) : itree 𝐸0 V =
match is_intrinsics (𝑓𝑛𝑎𝑚𝑒 ) with
| Some 𝑓 ⇒ 𝑣 ←↪ 𝑓 args in ret 𝑣
| None ⇒ trigger (IntrinsicV (𝑓𝑛𝑎𝑚𝑒 , 𝑎𝑟𝑔𝑠))

handleG 𝑒 𝑒𝑛𝑣 : stateT𝐸𝑛𝑣𝐺 (itree 𝐸1) _ =
𝜆 env . (match 𝑒 with
| GWr( ) (𝑙, 𝑣) ⇒ ret (Map.add 𝑙 𝑣 𝑒𝑛𝑣, tt)
| GRdV (𝑙) ⇒ 𝑣 ←↪ Map.lookup 𝑙 𝑒𝑛𝑣 in ret (𝑒𝑛𝑣, 𝑣))

handleSL 𝑒 : stateTFrame ∗ 𝑆𝑡𝑎𝑐𝑘 (itree 𝐸3) _ =
𝜆 (env, stack) .
(match 𝑒 with
| LPush( ) (𝑎𝑟𝑔𝑠) ⇒
ret (foldr (𝜆 (𝑥, 𝑑𝑣) . (Map.add 𝑥 𝑑𝑣))
Map.empty args, env :: stack), tt)

| LPop( ) ⇒
match 𝑠𝑡𝑎𝑐𝑘 with
| [] ⇒ fail
| 𝑒𝑛𝑣 ′:: 𝑠𝑡𝑎𝑐𝑘 ′ ⇒ ret ((𝑒𝑛𝑣 ′, 𝑠𝑡𝑎𝑐𝑘 ′), tt))

Figure 3.6: Handlers for Interpretation Levels

fails).13

G: Globals Global variables in VIR are given by a state monad that acts on a map 𝑒𝑛𝑣 of type 𝐸𝑛𝑣𝐺 from

identifiers to pointers. Handling globals simply involves converting GRdV (𝑘) and GWr( ) (𝑘, 𝑣,) events into

lookups and insertions into this map, respectively. The map 𝑒𝑛𝑣 is constructed at initialization time and is

constant thereafter.

L: Locals Local variables are handled analogously to globals, L events being implemented w.r.t. a map

of type 𝐸𝑛𝑣𝐿. The scope of local variables will be handled by SL events.

SL : Stack SL stack events are triggered when calling a function and returning from a function. These

SL events, LPush( ) (𝑎𝑠) and LPop( ) , set up the local environment containing the functions arguments and

pop this environment on function return, respectively. Local variables from an enclosing scope in VIR are

not accessible within the current scope, and so this stack of environments can simply be a list of unrelated

mappings from identifiers to values.

M: Memory The handler for VIR’s memory events is far more complex than the handlers described

above. The VIR implementation is closest to the quasi-concrete model proposed by Kang, et al. [KHM+15a].

Briefly, the quasi-concrete model has a “logical” memory, represented by an integer map to blocks, where

each block is an integer map to symbolic bytes that contain actual bytes or representation information,

including the possibility of undefinedness. Logical addresses are represented as a pair of integers; the first

being the index in the map of blocks, and the second representing the offset of the first byte of the value

within the block.M events are handled by interpreting them into a state monad containing this map of
13If the intrinsic function isn’t handled here, the event is re-triggered, allowing downstream interpreters to handle it. For

instance the memory handler handles the memcpy intrinsics.
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logical blocks, as well as a list of stack frames.

AllocaV (𝜏) allocates a new empty blockwith a sizematching𝜏 to the current stack frame. Store( ) (𝑎, 𝑣)

serializes 𝑣 into symbolic bytes, storing them at address 𝑎 in memory, and triggering failure if 𝑎 is not

allocated. LoadV𝑢 (𝜏, 𝑎) deserializes the symbolic bytes stored at 𝑎 in memory, also failing on unallocated

addresses. The GEPV (𝜏, 𝑑𝑣, 𝑣𝑠) event implements LLVM’s getelementptr instruction, which is used for

indexing into aggregate data structures, where 𝜏 is the type of the structure, 𝑑𝑣 is the base address of the

structure, and 𝑣𝑠 is a list of indices. The final twoM events are PtoIV (𝑎) and ItoPV (𝑎), which represent

pointer-to-integer and integer-to-pointer casts respectively. To properly handle these casts the model also

contains a “concrete” memory, giving concretized blocks (i.e., blocks referenced by a pointer has been cast

to an integer) a concrete address that can be converted to an integer. Pointer values remain “logical” until

they participate in a cast instruction.

This memory model, though sound, is a source of misalignment between our semantics and LLVM

IR’s semantics. Indeed, as described previously, we have taken care of introducing under-defined values in

order to make sure that successive reads to an instance of undef could lead to different results: it behaves

as a random variable. However, this memory model is only able to store a defined value: it collapses the

non-determinism via the PickV (_) event when interacting with the memory. This behavior prevents

proving the correctness of certain optimizations, such as store forwarding. Other proposed memory models,

such as the “twin allocation semantics” by Lee et al. [LHJ+18b] permit store forwarding, but prohibit other

desirable optimizations (such as dead allocation elimination). It remains an open research question how

best to fully model the LLVM’s complex memory semantics, but the modularity of our handlers should

make it easier to adapt VIR as the technology improves.

P: Pick When implementing the handlers for a PickV (𝑢) event, which resolve nondeterminism, there is

a bifurcation: The “true” semantic model, which aims to capture all the legal behaviors, uses a handler that

interprets behaviors into a monad propT𝐸𝐴 ≜ itree 𝐸 𝐴→ P. This monad represents sets of ITrees as Coq

predicates, allowing us to use logical quantifiers to express the allowable nondeterministic behaviors. On

the other hand, for executable versions of the VIR semantics, we can use any handler that implements one

of the allowable behaviors, but provides a way to run VIR programs. We will see in Section 4.1 that we can

prove that a (good) executable interpreter refines the model. Here, we just define the handlers themselves.
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The P handler for the semantic model is shown below:

model_handleP PickV (𝑢) : propT𝐸5
V = {𝑡 |

{
𝑡 ≈ fail ⟦𝑢⟧𝐶 = ∅
𝑡 ≈ ret 𝑣 𝑑𝑣 ∈ ⟦𝑢⟧𝐶 ∧ 𝑑𝑣 ≠ poison
𝑡 ≈ raiseUB 𝑑𝑣 ∈ ⟦𝑢⟧𝐶 ∧ 𝑑𝑣 = poison

}

Here, “≈” stands for ITree equivalence. The set ⟦𝑢⟧𝐶 denotes all possible defined values corresponding to

𝑢. For example, we have ⟦2/undefi64⟧𝐶 = {2, 1, 0, poison} because 2/2 = 1, 2/1 = 2, 2/0 = poison, and

2/n = 0 for all other (unsigned) n. Thus, handling PickV (2/undefi64) might trigger undefined behavior

or it might yield 0, 1, or 2, nondeterministically. If there are no concretizations of 𝑢, the semantics fails.

Many executable implementations are allowed by this model—they work by “picking” a default value

(generally the equivalent of 0 for the given type) for each instance of undef𝜏 in the under-defined expression

𝑢 and then evaluating the expression to obtain a defined value.

exec_handleP PickV (𝑢) : propT𝐸5
V = ret default(u)

U: Undefined Behavior Vellvm represents undefined behavior through U events. A U event UB∅

is triggered whenever undefined behavior is encountered, either directly from the interpretation of the

program, as in the case of a store to poison, or less directly through under-defined values and P events,

such as a division by undef as described above. As with P, there are both propositional and executable

handlers.

The propT handler is trivial: it permits the set of all ITrees of the appropriate type:

model_handleU UB∅ : propT𝐸5
V = {𝑡 | 𝑡 : itree 𝐸5 V}

An executable semantics is free to do anything at all upon encountering undefined behavior. To aid with

debugging, our executable semantics simply fails:

exec_handleU UB∅ : propT𝐸5
V = fail

3.3.4 Stitching the Semantics Together

Having represented our syntax as ITrees, and having defined handlers for each event type, we combine

them with interp (see Chapter 2) to obtain intepreters over complete ITrees as depicted in Figure 3.5. The
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order in which we compose these interpreters is chosen to keep “simpler” semantics (such as the pure

intrinsics) earlier and delay as far down the chain as possible the introduction of the prop monad.

At the top-level, an LLVM program is parsed into a VIR representation containing the declarations

of globals14, the mcfg, and the name of the main from which to start the execution. The set of internal

functions is fixed and known statically, which allows us to build the association list of function addresses

to denotations required by ⟦_⟧mcfg:

⟦prog⟧VIR main args mcfg =
genv ← build_global_env (𝑝𝑟𝑜𝑔) ;;
defns← mapm ( 𝜆 cfg . 𝑓 𝑣 ← trigger (GRdV (cfg.(𝑒𝑛𝑡𝑟𝑦))) ;;

ret (fv, ⟦cfg⟧cfg)) prog ;;
𝑎𝑑𝑑𝑟 ← trigger (GRdV (𝑚𝑎𝑖𝑛)) ;;
⟦prog⟧mcfg defns (↑ 𝑎𝑑𝑑𝑟 ) args

Finally, we obtain the full semantic model for VIR, model, as interp_vir(⟦_⟧VIR). If, rather than

composing all the layers of intepretation, we instead define interp_vir4, stopping at the fourth level, we

obtain a semantics that does not introduce the propmonad—we return to this idea in Section 4.1. Finally, we

can also interpret all stages, but using different handlers: the left path on Figure 3.5 defines the propositional

model, where the right path leads to an executable interpreter for VIR that we refer to as interpreter.

14We elide the details of the initialization of the global environment, keeping build_global_env opaque.
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Chapter 4

VIR Metatheory

4.1 VIR Equivalences

One of Vellvm’s primary goals is to serve as a formal semantics suitable for reasoning about LLVM IR code,

for verifying optimization passes or the correctness of translations to/from it. We hence require a notion of

what it means for an optimization to be correct: we need a refinement relation between LLVM programs.

Due to the nondeterminism present in LLVM (e.g. for undef values and undefined behaviors), a single

program fragment 𝑝 may have a set of valid behaviors ⟦𝑝⟧,and any 𝑝′ such that ⟦𝑝⟧ ⊇ ⟦𝑝′⟧ is a valid

refinement of 𝑝 .

In this section, we define appropriate notions of refinement and prove that we can lift refinements at

the ITree level to set inclusions at the propositional level. We also establish some powerful general-purpose

machinery for working with these refinements, obtaining the correctness of VIR’s executable interpreter

with respect to the nondeterministic model as an easy corollary of the correctness of handlers for pick and

undefined behaviors. The refinement theory is crucial for reasoning about VIR programs—by lifting the

structural equational theory to VIR constructs, we obtain powerful relational reasoning principles suitable

to prove correct program transformations and compilers targeting VIR in a compositional fashion.

4.1.1 ITree Equivalences and Refinement Relations

At the heart of the refinement relations for ITrees is the 𝑡1 ≈𝑅 𝑡2, or eutt relation, also known as “equivalence

up to taus.” Here 𝑡1 ≈𝑅 𝑡2 relates 𝑡1 with 𝑡2 if these itrees are weakly bisimilar (i.e. they produce the same

tree of visible events, ignoring any finite number of Taus) where all values returned along corresponding

branches are related by 𝑅. We omit the definition of ≈𝑅 (see [XZH+20, ZHHZ20] for details), instead

focusing on its relevant properties. Technically, ≈𝑅 is an equivalence relation only when 𝑅 is; the usual

notion of weak bisimulation is recovered as the instance ≈eq, where the relation is chosen to be Coq’s

Leibnitz equality, eq, and we leave off the subscript in this case. The ≈ relation plays a particular role in
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General Monad Laws

𝑥 ← ret 𝑣 ; ; 𝑘 𝑥 ≈ 𝑘 𝑣
𝑥 ← 𝑡 ; ; ret 𝑥 ≈ 𝑡

𝑥 ← (𝑦 ← 𝑠; ; 𝑡 𝑦); ; 𝑢 𝑥 ≈
(𝑦 ← 𝑠; ; 𝑥 ← 𝑡 𝑦; ; 𝑢 𝑥)

General Interpreter Laws

interp ℎ (trigger 𝑒) ≈ ℎ _ 𝑒
interp ℎ (ret 𝑟 ) ≈ ret 𝑟
interp ℎ (𝑥 ← 𝑡 ; ; 𝑘 𝑥) ≈
𝑥 ← interp ℎ 𝑡 ; ; interp ℎ (𝑘 𝑥)

ITree-specific Structural Laws

Tau 𝑡 ≈ 𝑡
𝑥 ← Tau 𝑡 ; ; 𝑘 𝑥 ≈ Tau (𝑥 ← 𝑡 ; ; 𝑘 𝑥)

𝑥 ← Vis 𝑒 𝑘1; ; 𝑘2 𝑥 ≈ Vis 𝑒 (𝜆 𝑦. (𝑥 ← 𝑘1 𝑦; ; 𝑘2 𝑥))
Figure 4.1: Core equational theory of ITrees.

that it can be used as a rewriting rule in any ≈𝑅 goal. When 𝑅 is a preorder (i.e. reflexive and transitive),

so is ≈𝑅 , and we can think of this relation as a form of tree refinement; in this case we write 𝑡1 ≳𝑅 𝑡2 to

emphasize the (potential) asymmetry and think of 𝑡2 as refining 𝑡1.

The ITrees equational theory is defined in terms of ≈. Figure 4.1 shows the key equivalences that allow

us to exploit the monadic structure and semantics of interpretations. The general interpreter laws hold for

any monad that supports a suitable implementation of the iter combinator, which includes ITrees and

many monads built from them—especially important for the VIR semantics are the state and propositional

monad transformers.15 The figure also shows laws specific to ITrees, which explain how Tau and Vis

interact with bind. The first of these laws, (Tau 𝑡) ≈ 𝑡 , lets us ignore any (finite number) of Tau’s, which is

where ≈ gets the name “equivalence up to taus” from.

Figure 4.2 shows (selected) relational reasoning principles that hold for ≈𝑅 , for an arbitrary relation

𝑅. In the case of refinements, the ERet rule establishes the basic relation between values returned by the

computation, and reflexivity of 𝑅 ensures that the computation refines itself. In the ETrans rule, we write

𝑅1◦𝑅2 for relation composition. For refinements, we have 𝑅◦𝑅 = 𝑅 by transitivity, so indeed tree refinement

is also transitive. Moreover, ETrans implies that rewriting with the monad and interpretation laws is sound

for refinement: since eq ◦ 𝑅 = 𝑅 = 𝑅 ◦ eq for any relation 𝑅. This means that we can string refinements

and equivalences together to reach a desired conclusion. For instance, from 𝑡1 ≈ 𝑡2 ≳𝑅 𝑡3 ≳𝑅 𝑡4 ≈ 𝑡5 we can

conclude 𝑡1 ≳𝑅 𝑡5.

Rule EMon says that monotonicity allows us to prove a stronger refinement relation to establish a weaker

one, and EInterp says that interpretation with respect to the same handler preserves any refinement relation
15The Coq code uses typeclasses to characterize such monads and to overload ≈𝑅 with suitable notions of refinement.
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𝑅(𝑟1, 𝑟2)
ret 𝑟1 ≈𝑅 ret 𝑟2

ERet
𝑡1 ≈𝑅1 𝑡2 𝑡2 ≈𝑅2 𝑡3

𝑡1 ≈𝑅1◦𝑅2 𝑡3
ETrans

𝑡1 ≈𝑈 𝑡2 ∀ 𝑢1, 𝑢2,𝑈 (𝑢1, 𝑢2) ⇒ (𝑘1 𝑢1) ≈𝑅 (𝑘2 𝑢2)
(𝑥 ← 𝑡1; ; (𝑘1 𝑥)) ≈𝑅 (𝑥 ← 𝑡2; ; (𝑘2 𝑥))

ECloBind

𝑡1 ≈𝑅1 𝑡2 𝑅1 ⊆ 𝑅2
𝑡1 ≈𝑅2 𝑡2

EMon
𝑡1 ≈𝑅 𝑡2

(interp ℎ 𝑡1) ≈𝑅 (interp ℎ 𝑡2)
EInterp

Figure 4.2: Relational reasoning principles

(intuitively, since handlers affect only the visible events of the tree, the leaves remain in the refinement

relation). Finally, ECloBind (for “relational closure under bind”) says that, to prove that two trees both built

from binds are related by refinement, it suffices to find some relation𝑈 (which is existentially quantified in

this rule) that relates the results of the first parts of the computation and that for any answers related by𝑈

that they might produce, the continuations of the bind are in refinement. ECloBind plays a crucial role in

reasoning about ITrees—we will see in more detail below how it is used.
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4.1.2 Interpretation into P

Recall that a predicate 𝑆 : 𝐴→ P can be thought of as a (propositionally-defined) set of values of type𝐴. We

write 𝑎 ∈ 𝑆 for the proposition 𝑆 𝑎, which indicates that 𝑎 is an element of 𝑆 . Similarly, the type propT𝐸A,

defined as itree 𝐸 𝐴→ P, represents a set of ITrees, where we additionally treat set membership modulo ≈.

We use this type in the VIR semantics to model nondeterminism in the language definition. The type propT𝐸

is nearly a monad,16 where, intuitively, ret 𝑥 is the singleton set {𝑥} corresponding to a deterministic

result, but bind spec 𝑘𝑠𝑝𝑒𝑐 must take the union over all possible nondeterministic behaviors allowed by spec,

when each of those might itself continue via any one of a set of possible behaviors characterized by 𝑘𝑠𝑝𝑒𝑐 .

The unions are implemented in Coq by existentially quantifying over the possibilities. Formally, we have:

Definition 1. propT𝐸A operations

ret (𝑥 : 𝐴) : propT𝐸 𝐴 = 𝜆(𝑡 : itree 𝐸 𝐴) . 𝑡 ≈ ret 𝑥

bind(spec𝐴 : propT𝐸 𝐴) (𝑘𝑠𝑝𝑒𝑐 : 𝐴→ propT𝐹 𝐵) : propT𝐹 𝐵 =

𝜆(𝑡 : itree 𝐸 𝐵) . ∃(𝑡𝑎 : itree 𝐸 𝐴) ∃(𝑘 : 𝐴→ itree 𝐸 𝐵)) .

𝑡 ≈ (𝑥 ← 𝑡𝑎 ; ; (𝑘 𝑥)) ∧ 𝑡𝑎 ∈ spec𝐴 ∧

∀(𝑎 : 𝐴), (𝑎 ∈ returns 𝑡𝑎) ⇒ (𝑘 𝑎) ∈ (𝑘𝑠𝑝𝑒𝑐 𝑎)

Here, ret lifts a value into the singleton set containing the pure itree that simply returns the value. The

bind operation is more interesting: the resulting set contains all trees that can be factored into a subtree 𝑡𝑎

satisfying the predicate spec𝐴, bound to a continuation 𝑘 that maps every answer 𝑎 that might be returned

by 𝑡𝑎 to a tree satisfying 𝑘𝑠𝑝𝑒𝑐 𝑎. The returns 𝑡𝑎 predicate is an inductively defined characterization of the

set of values that might be returned by the computation 𝑡𝑎 , and it is given by the definition below.

Definition 2. Returns 𝑡

(Returns 𝑡) : 𝐴→ P is the smallest set such that

• 𝑡 ≈ ret 𝑎 ⇒ 𝑎 ∈ (Returns 𝑡)

• 𝑡 ≈ Tau 𝑢 ⇒ 𝑎 ∈ (Returns 𝑢) ⇒ 𝑎 ∈ (Returns 𝑡)
16All of the expected monad laws hold with respect to equality defined as set equivalence (up to ≈), except one direction of bind

associativity. This is expected in the presence of nondeterminism [MHRVM20].
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• 𝑡 ≈ Vis 𝑒 𝑘 ⇒ ∃(𝑏 : 𝐵), 𝑎 ∈ (Returns (𝑘 𝑏)) ⇒ 𝑎 ∈ (Returns 𝑡), where 𝑒 : 𝐸𝐵 is an event with

response type 𝐵.

The key part of its definition says that a value 𝑎 is in the set returns(Vis e k) if there exists a value

𝑏 such that 𝑎 ∈ returns(k 𝑏), in other words, if the continuation k can return 𝑎 for some 𝑏. Crucially,

returns 𝑡𝑎 can be a strict subset of values of type 𝐴—for instance it is empty when 𝑡𝑎 (always) diverges.

Quantifying over all 𝑎 ∈ 𝐴, rather than just those that 𝑡𝑎 might yield, is too strong and breaks many expected

monad law equivalences.

The semantics of nondeterministic events like pick are given by interpretation via a function interp_prop

into propT𝐸A, which as we saw above, represents a set of ITrees. This is sufficient for the purposes of

defining the semantics, but to prove a refinement relation between two such interpretations, it is convenient

to also allow the sets produced by interpreter to be “saturated” by a relation, so we parameterize the type

of interp_prop to include a relation 𝑅 on the underlying ITree type and define it as follows:

Definition 3. interp_prop Let ℎ𝑠𝑝𝑒𝑐 : 𝐸 { propT𝐹 be a (propositional) handler and 𝑅 : 𝐴 → 𝐵 → P

be a relation, then interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 has type itree 𝐸 𝐴→ propT𝐹 𝐵 and is defined as a coinductive

predicate satisfying:

• If 𝑅(𝑟1, 𝑟2) and 𝑡2 ≈ ret 𝑟2 then 𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (Ret 𝑟1)

• If 𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡1 then 𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (Tau 𝑡1)

• If 𝑡2 ≈ (bind 𝑡𝑐 𝑘2) for some 𝑡𝑐 and 𝑘2 : 𝐶 → itree 𝐸 𝐵 such that 𝑡𝑐 ∈ (ℎ𝑠𝑝𝑒𝑐 𝑒) and

∀(𝑐 : 𝐶), (returns 𝑡𝑐 𝑐) ⇒ (𝑘2 𝑐) ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (𝑘1 𝑎), then

𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (Vis 𝑒 𝑘1)

This definition of interp_prop satisfies the general interpreter laws in Figure 4.1.17 More importantly

for reasoning about sets of behaviors is that interpretation “lifts” handlers. First, let us define what it means

for a handler ℎ to satisfy some specification:

Definition 4. Handler Correctness. A handler ℎ : 𝐸 { itree 𝐹 is correct with respect to a specification

ℎ𝑠𝑝𝑒𝑐 : 𝐸 { propT𝐹 , written as ℎ ∈ ℎ𝑠𝑝𝑒𝑐 , if and only if ∀ 𝑇 𝑒, (ℎ 𝑇 𝑒) ∈ ℎ𝑠𝑝𝑒𝑐 𝑇 𝑒 .
17Except that, as for bind associativity, the bind law holds in only one direction, again due to nondeterminism.
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Then we prove that interpretation of some tree by a handler ℎ that is correct with respect to some speci-

fication ℎ𝑠𝑝𝑒𝑐 yields a computation whose behaviors are among those allowed by the specification. The

following lemma follows by straightforward coinduction.

Lemma 1. interp_prop correct. For any handler ℎ ∈ ℎ𝑠𝑝𝑒𝑐 , any reflexive relation 𝑅, and any tree

𝑡 : itree 𝐸 𝐴 it is the case that (interp ℎ 𝑡) ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡 .

A significantly less trivial property—the proof is fairly tricky and we refer interested readers to the Coq

development for details—establishes that the analog of the EInterp rule from Figure 4.2 also holds when

we interpret into the PropT monad.

Lemma 2. interp_prop respects refinement. For any ℎ𝑠𝑝𝑒𝑐 and any partial order 𝑅, if 𝑡1 ≳𝑅 𝑡2, then

(interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡1) ⊇ (interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡2).

With the above results established, our development uses interp_prop𝑅 in two ways. In the definition

of the VIR propositional model (see the left path of Figure 3.5), we use 𝑅 = eq (Coq’s equality), in which

case interp_propeq gives us the desired “sets of ITrees” semantics for modeling nondeterminism. On the

other hand, we use Lemma 2 to reason about that model—in particular, to establish refinement properties,

where we pick 𝑅 to be nontrivial (see Section 4.2.1).

4.1.3 Equational Theory for Vellvm

We use the ITrees equational theory described above to reason about VIR code. As simple examples, it

is easy to prove that ⟦3 + 4⟧𝑒 ≈ ⟦7⟧𝑒 , and, with a bit more work, that interp_vir3⟦3 + %𝑥⟧𝑒 (𝑙, 𝑔) ≈

interp_vir3⟦7⟧𝑒 (𝑙, 𝑔) whenever 𝑙 (%𝑥) = 4 (we have to interpret to 𝐿3 to reason about the local envi-

ronment 𝑙). Equations of this form let us use rewriting to “execute” the VIR semantics in any refinement

proof.

It is a common compiler optimization to perform systematic rewriting of equivalent expressions, often

associated with clever mechanisms used to find the optimal sequence of rewriting according to some cost

function. Since expressions depend on the state, but (most) do not cause side effects,18 rewriting expression
18In our memory model, pointer-to-integer casts do have side effects.
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outputs(cfg2) ∩ inputs(cfg1) = ∅ 𝑡𝑜 ∉ inputs(cfg1)
⟦cfg1 ++ cfg2⟧bks (𝑓 , 𝑡𝑜) ≈ ⟦cfg2⟧bks (𝑓 , 𝑡𝑜)

SubCFG1

independent_flows cfg1 cfg2 𝑡𝑜 ∈ inputs(cfg𝑖 )
⟦cfg1 ++ cfg2⟧bks (𝑓 , 𝑡𝑜) ≈ ⟦cfgi⟧bks (𝑓 , 𝑡𝑜)

Flow

⟦cfg1 ++ cfg2⟧bks (𝑓 , 𝑡𝑜) ≈ 𝑥 ← ⟦cfg1⟧bks (𝑓 , 𝑡𝑜) ;; match 𝑥 with | inl fto⇒ ⟦cfg1 ++ cfg2⟧bks fto
| inr 𝑣 ⇒ ret 𝑣

SubCFG2

Figure 4.3: Structural VIR equations (excerpt)

𝑒 into 𝑓 can usually be established sound with respect to a strong notion of equivalence: they are bisimilar,

and compute exactly the same states, i.e.:

∀𝑔 𝑙 𝑚, interp_vir4⟦𝑒⟧𝑒 𝑔 𝑙 𝑚 ≈ interp_vir4⟦𝑓 ⟧𝑒 𝑔 𝑙 𝑚.

This equivalence, much stronger than the notion of refinement that completely disregards the computed

states (see Section 4.2.1), can be easily lifted to all contexts without any syntactic conditions about variables

in scope. Naturally, this strong equivalence also entails the refinement relation: substitution of 𝑓 for 𝑒 is

always sound, in any piece of syntax.

While one could always unfold the denotation of a Vellvm program to systematically use the low level

equational theory of the underlying monad, it would quickly be extremely tedious and impractical. Instead,

we make all representation functions opaque and provide a high level equational theory to reason directly

over the syntax of Vellvm programs.

The equations pertaining to the denotation of open cfgs are of particular interest: we highlight a couple

of them in Figure 4.3. Suppose that we are interested in the semantics of a cfg composed of two components

cfg1 and cfg2. Equation SubCFG1 allows us to simply disregard cfg1 granted that we syntactically check that

we are jumping into cfg2, and that it cannot jump back into cfg1: we can reason about sequence. Similarly,

equation Flow helps to reason about branches: if cfg1 and cfg2 are (syntactically) completely independent,

the semantics of their union is simply the semantics of whichever subgraph we enter. Finally, equation

SubCFG2 states that we can always temporarily forget about cfg2 by starting execution in cfg1 (without

cfg2) and then proceeding afterward with the whole graph in scope.
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Lifting expression equivalence The compositionality of the semantics allows us to lift equivalences

of sub-components to the context. In general, this process is non-trivial: an optimization eliminating an

instruction from a block can naturally only be lifted into a context where the assigned variable is dead.

However, compositionality allows us to prove the syntactic conditions on the context under which the

substitution is valid once and for all, and reason locally when proving optimizations.

Reasoning about the control flow in a stateless world: block fusion While substitution of equivalent

expressions is the canonical example of a local reasoning enabled by compositionality, we prove a simple

block fusion optimization to illustrate the benefits from the modularity of the semantics.

The optimization scans a cfg until it finds a block 𝑏𝑘𝑠 such that: (1) 𝑏𝑘𝑠 has a direct jump to some block

𝑏𝑘𝑡 , (2) 𝑏𝑘𝑡 admits only 𝑏𝑘𝑠 for predecessor, (3) 𝑏𝑘𝑠 and 𝑏𝑘𝑡 are distinct and (4) 𝑏𝑘𝑡 has no phi-node. If it

finds such a couple, it removes them from the graph, adds their obvious sequential merge, and updates the

phi-nodes of the successors of 𝑏𝑘𝑡 to expect instead a jump from 𝑏𝑘𝑠 .

This optimization only modifies the control flow of programs. As a consequence, we can establish the

correctness of the transformation without interpreting any event in the graph. Assuming a well-formed

graph𝐺—all block identifiers are unique, and phi-nodes only expect jumps from predecessors—we establish:

⟦G⟧cfg ≈ ⟦fusion_block G⟧cfg.

The result is established with no layer of interpretation, abstracting away from the state. Once again, the

equivalence can be transported by interpretation all the way to the top-level semantics.

The proof of this result on closed cfgs derives from a bisimulation established on open cfgs. At that

level, the post-condition established is not straightforward equality of computed results: the provenance of

a jump out of the graph may have been changed by the transformation. This subtlety disappears when

specialized over closed graphs, resulting in this simple ≈ relation.

It is worth noting that establishing the simulation for this optimization must be done using an explicit

coinductive proof — in contrast to transformations such as loop unrolling for instance. To the best of our

knowledge, the axiomatization of the ITree loop iterators is indeed not expressive enough to reason about

such fusion because it requires matching two iterations of a body to a single iteration of the body for some
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values of the accumulator.

4.2 VIR Refinement and Relational Reasoning

4.2.1 VIR Refinements

The refinement machinery defined in Sections 4.1.1 and 4.1.2 lets us give a clean semantics to VIR’s

underspecified values and undefined behaviors. Moreover, we can straightforwardly define appropriate

refinement relations that work at any level of interpretation shown in Figure 3.5 such that refinement at

one level implies refinement at the next. This arrangement means that we can prove the correctness of

program transformations at whatever level is most suited to the task.

Uvalue refinements In order to prove refinements between programs we need to know what it means

for a value to be a refinement of another in Vellvm. For concrete values, this is straightforward: refinement

is reflexive and anything can refine poison. However, as we have established, LLVM makes use of (typed)

under-defined values, which can represent arbitrary (typed) sets of concrete values. The refinement relation

is thus given by inclusion between the sets of concrete values that can be represented by a V𝑢 . At the

base case we have ⟦undef𝜏⟧𝐶 = {𝑣 | 𝑣 is a concrete value of type 𝜏} where the notation ⟦𝑥⟧𝐶 represents

the set of concrete values of 𝑥 . For instance ⟦undef𝑖64⟧𝐶 is the set of all 64-bit integers. SinceV𝑢 contains

“delayed” computations like 2× undef𝑖64, the sets are nontrivial. In this case, we have that ⟦2× undef𝑖64⟧𝐶

is the set of even 64-bit integers.

Definition 5. Uvalue refinement. We say that 𝑎 ∈ V𝑢 refines 𝑢 ∈ V𝑢 precisely when ⟦𝑢⟧𝐶 ⊇ ⟦𝑎⟧𝐶 and we

write 𝑢 ⪰ 𝑎 for that relation.

Uvalue refinement, namely 𝑡1 ≈⪰ 𝑡2, gives us the base notion of what it means for VIR programs to

be related at the structural level 𝐿0 in which none of the LLVM events have yet been interpreted. At

each subsequent layer of interpretation, we are free to choose what observations of the computation are

considered relevant for program equivalence. Following usual practice, we want those observations to be as

liberal as possible to permit as many program transformations as we can—ultimately, we choose to observe

(for programs without undefined behavior) only the (possibly infinite) sequence of external function calls
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and the value (if any) returned by the program (up to uvalue refinement). A program with undefined

behavior after some finite sequence of external calls is refined by any program that exhibits the same series

of calls and then can behave arbitrarily. In particular, all the state (the memory, stack, local and global

environments) is irrelevant. We express this irrelevancy by using the total relation: T = 𝜆𝑥 𝑦 .⊤, which

relates all elements of its domain, for those components of the state. Thus, at 𝐿1 we use the refinement

𝑡1 ≈T×⪰ 𝑡2, and each subsequent state interpretation adds another T × − to the relation.

Levels 1-4 introduce pieces of state: the compiler has no responsibility to preserve them, as long as

programs exhibit the same series of external calls and return values are related by ⪰. Thus, at 𝐿1 we use

the refinement 𝑡1 ≈T×⪰ 𝑡2, where T is the total relation. Each subsequent state interpretation adds another

T × − to the relation.

A consequence of EInterp is that refinement at a level implies refinement at later levels. For instance,

we have:

Lemma 3. 𝐿0 to 𝐿1 refinement

For any global state 𝑔, if 𝑡1 ≈⪰ 𝑡2 then (interp_global 𝑡1 𝑔) ≈T×⪰ (interp_global 𝑡2 𝑔) .

For P and U, this approach falls short as they lift their events into the propT𝐸 monad. We instead

use Lemma 2 to lift a tree refinement to set inclusion, which gives us the desired definition of top level

refinement for VIR programs.

Soundness of the executable interpreter A pleasing—and very useful—consequence of the above

refinement lemmas is that it is almost trivial to prove that the executable VIR interpreter’s program behaviors

are permitted by the VIR semantics. The following theorem follows directly from Lemma 1 by showing that

the executable handlers for P andU are correct with respect to their propositional specifications (which is

entirely straightforward, since for P the only requirement is that the handler choose a concrete value of

the appropriate type andU allows any behavior at all).

Theorem 1. VIR interpreter soundness For any program 𝑝 , (interpreter 𝑝) ∈ model 𝑝 .
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4.2.2 Floyd-Hoare-Style Forward Relational Reasoning

From the point of view of reasoning, we can think of the 𝑅 of ≈𝑅 as a relational postcondition satisfied by

two bisimilar computations. Heterogeneous relations 𝑅 : 𝐴 → 𝐵 → P, which relate ITrees of different

return types, are useful when connecting the behaviors of two ITrees, as is typical when reasoning about a

compiler’s or program transformation’s correctness.

In this case we prove 𝑡𝑠𝑟𝑐 ≈𝑆𝑇 𝑡𝑡𝑔𝑡 for source and target trees that encode their respective semantics.

Relation 𝑆𝑇 establishes the connection between source and target states, which might be of different types.

The general relational properties work together allowing a verification strategy following this recipe: (1)

rewrite 𝑡𝑠𝑟𝑐 and 𝑡𝑡𝑔𝑡 using the monad laws to normalize the trees by unnesting binds, eliminating Taus

and “bubbling” triggers and variables to the top; (2) use ECloBind to break down the term into simpler

pieces that use assumptions about the variable from the environment or lemmas about the triggered event’s

handler; (3) conclude by ERet or independent lemmas established over the correctness of these smaller

pieces.

When working with VIR in particular, we apply the same recipe but change the granularity of our

“atomic” computations: we do not bubble up triggers but instead we bubble up denotations of individual

instruction, keeping their representation opaque and relying on axiomatizations of their behaviors.

Here ECloBind is analogous to the usual “sequencing” rule from Hoare logic, stating that to establish

a postcondition 𝑅, we need to find some intermediate relation𝑈 that acts as a postcondition for the first

tree. While this relation shares some similarities with the more traditional simulation relation used in

backward-simulation-based approaches, it does not have to be global: each application of the ECloBind

rule may introduce a different relation, much in the style of Floyd-Hoare forward proof. EInterp allows

commuting ≈𝑅 through interpreters.

4.2.3 Expressing Functional Properties of VIR: a Derived Unary Program Logic

Using eutt, we can express and prove in the same framework the equational theory of VIR, the correctness

of VIR to VIR optimizations, or, when used heterogeneously, to prove transformations relating VIR to other

languages. When conducting such proofs, ≈𝑅 can be thought as a termination, trace equivalence, sensitive
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relational program logic, where ECloBind acts as a cut rule.

An important missing aspect is the ability to express (and use in refinement proofs) functional properties

of specific programs. To this end, we introduce a unary interpretation of eutt: given 𝑡 : itree 𝐸 𝑋 and

𝑃 : 𝑋 → P, we write 𝑡 ↩→ 𝑃 ≜ 𝑡 ≈(𝜆 (𝑥,𝑦)=>𝑃 𝑥 ) 𝑡 .19

This unary relation inherits from eutt a sequencing rule, and allows for the combination of postcondi-

tions of a same computations with respect to the usual logical combinators. This program logic has a partial

correctness interpretation: all finite branches of the tree lead to the postcondition, but some branches may

diverge.

We prove that such unary judgments can be established independently and easily invoked during

refinement proofs. We derive to this end a new version of the ECloBind rule:
𝑡1 ↩→ 𝑄1 𝑡2 ↩→ 𝑄2 𝑡1 ≈𝑈 𝑡2 ∀ 𝑢1, 𝑢2,𝑈 (𝑢1, 𝑢2) ⇒ 𝑄1 𝑢1 ⇒ 𝑄2 𝑢2 ⇒ (𝑘1 𝑢1) ≈𝑅 (𝑘2 𝑢2)

(𝑥 ← 𝑡1; ; (𝑘1 𝑥)) ≈𝑅 (𝑥 ← 𝑡2; ; (𝑘2 𝑥))

A semantically simple, but practically crucial example of application of this rule is during the proof

of correctness of the block fusion optimization. During the simulation, the semantics of terminators of

blocks that are not the fused one are matched one against another trivially—they are the same. However,

the correctness of the transformation requires us to prove that we will not jump to the fused block. To

do so, we use this unary predicate to prove as a property of the semantics that the denotation of blocks

can only return labels that are syntactically in the successors of the block. While this fact is intuitively

trivial, establishing it requires a case analysis on the terminator and an explicit processing of its semantics

— something that one one does not want to inline in a refinement proof.

Indeed, in the special case where a tree 𝑡 is related to itself, i.e. 𝑡 ≈𝑅 𝑡 , we have that any value 𝑟 returned

by the tree will satisfy 𝑅(𝑟, 𝑟 ). We can encode usual Floyd-Hoare-style postconditions as the “diagonal” of

some appropriately chosen 𝑅. It’s worth noting that 𝑅 need not be total, and choosing partial relations

can be useful. For example, one can prove that 𝑡 ≈∅ 𝑡 holds, if and only if 𝑡 never returns, that is, every

branch diverges or ends in a visible event with void response type (and so there can be no answer from the

environment) We can also characterize the predicate Returns 𝑡 𝑎 as the smallest set such that the relation

given by 𝑅𝑡 = (𝜆𝑥 𝑦 . 𝑥 = 𝑦 ∧ Returns 𝑡 𝑥) satisfies 𝑡 ≈𝑅𝑡 𝑡 , or, equivalently Returns 𝑡 is the domain of the

smallest 𝑅 such that 𝑡 ≈𝑅 𝑡—facts that are needed to establish some of the equivalences on interp_prop.
19We show that the definition 𝑡 ≈(𝜆 (𝑥,𝑦)=>𝑃 𝑥∧𝑥=𝑦) 𝑡 is equivalent.
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4.3 Related Work

There is a large literature on formal verification of software artifacts [RPS+19a]. Here we focus on the

works most closely connected to the VIR development.

Verified compilers The CompCert [Ler09] C compiler was a pivotal development in the domain of

verified compilation, tackling a real world programming language and nontrivial optimizations formally

in the Coq proof assistant [Tea20]. CompCert’s success has fueled numerous projects aiming to expand

upon its results. Examples include the addition of concurrency [ŠevčíkVN+13], the support for linking open

programs [SCK+19, PA19], or the preservation of security properties [BBG+20]. Others have developed their

own infrastructure in order to tackle different languages: the CakeML [KMNO14] project has developed a

complete verified chain of compilation for ML

Compositional verification CompCert’s original theorem suffered the major restriction of applying

only to whole programs, thereby disallowing linking. A rich line of works [KKH+16, NHK+15, SBCA15,

WWS19, SCK+19] has sought to relax this restriction via compositional simulation techniques. These works

have struck different balances between expressiveness and proof obligations. Patterson and Ahmed [PA19]

have recently proposed a framework allowing to compare these result. Another point of comparison

comes from CertiKOS’[GKR+15, GSK+18] certified (concurrent) abstraction layers. These layers share many

properties with the relational reasoning techniques we describe in Section 4.1, albeit the connections among

such techniques requires further investigations.

Non-small step approaches Interaction trees were developed as a general-purpose representation for

effectful, interactive, and possibly-divergent code [XZH+20] and, besides programming language semantics,

have been used for specifying network servers[KLL+19]. One of their distinguishing features is the pervasive

use of coinduction, which is crucial to support recursion and iteration, but requires sophisticated proof

techniques [HNDV13, ZHHZ20]. Leroy and Grall [LG09] have experimented with coinduction to model

divergence in the operational semantics of a lambda calculus, proving type soundness and verifying a

compiler.

Several other exceptions to using relational small-step semantics approach are notable. Chlipala [Chl10]

verifies a compiler for a language shallowly-embedded in Coq. The language in question is total, and
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hence does not require recursion combinators; nevertheless, this style of semantics admits modular and

compositional proof techniques similar to ours. Owens et al. advocate for big-step semantics “akin” to

an interpreter [OMKT16]—they use a “clock” for “fuel” to bound recursion, thereby sidestepping the need

for coinduction, but requiring proofs to take the fuel into account via step-indexed logical relations. We

take this idea a step further and use a true interpreter, embracing the coinductive structure directly. This

means that we can more readily reason equationally about ITrees semantics. The tradeoffs between such

step-indexed and coinductive approaches deserve more attention.

JSCert The JSCert project [BCF+14], which formalizes JavaScript semantics in Coq, uses Char-

guéraud’s “pretty big step” semantics [Cha13]. This approach, like interaction trees, promotes composition-

ality by allowing the semantics to be defined inductively on the syntax; it also uses coinduction to handle

diverging terms. Unlike interaction trees, however, “pretty big step” semantics are still defined relationally.

The authors implemented a separate executable version of semantics, JSRef, that is intended to serve as a

reference implementation. Nontrivial proof effort (we estimate that it takes several thousand lines of Coq

code) is required to prove the correspondence of the JSCert pretty-big step relational specification with the

JSRef executable version. The authors write: “We believe that both JSCert and JSRef are necessary: JSCert,

unlike JSRef, is well-suited for developing inductive proofs about the semantics of JavaScript; JSRef, unlike

JSCert, can be used to run JavaScript programs.” In contrast, we have shown that interaction trees meet

both desiderata: they are well suited both for inductive proofs and for excecutability.

LLVM and C Semantics The Vellvm project [ZNMZ12] has focused its attention on LLVM’s intermedi-

ate representation and verified complex optimizations over it [ZNMZ13]. The subset of LLVM IR that Vellvm

handles is fairly similar to VIR’s, albeit marginally outdated and less rich in features. More importantly,

their semantics are radically different: Vellvm relies on a traditional small step relation parameterized by the

whole mcfg considered. Proving any transformation of programs changes the mcfg in play and therefore

requires to relate two distinct semantics, which in turn requires heavy invariants. Our approach leads to

a significantly cleaner semantics illustrated by the removal of the heavy notion of program counter that

Vellvm manipulates.

A number of other projects have formalized various subsets of C [Ell12, KW15, MML+16, MGD+19],

or LLVM IR—such as Crellvm [KKS+18], K-LLVM [LG20a], and the Alive [LMNR15, MN17] projects. The
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Crellvm project uses the Vellvm semantics internally, so it inherits the same fundamental structure. The

K-LLVM framework, implemented in K [Rc10], is perhaps the most complete executable semantics for

the LLVM IR and has been used for extensive testing. There is some work connecting K specifications

to Isabelle/HOL [LG18], but, to our knowledge, the viability of that approach for formal proofs of, e.g.,

compiler correctness, remains to be demonstrated.

Alive [LMNR15], and its recent successor Alive2 [LLH+21], focus on finding bugs in the LLVM IR

implementation by using translation validation to check for mis-optimizations. Alive2 is able to run directly

on LLVM’s source code, and has demonstrated an impressive efficacy. Although their objective, bug-finding,

differs from ours, formal verification, both projects share the need for formalizing parts of LLVM IR’s

semantics. One significant difference from our approach is that Alive2 only formalizes LLVM’s semantics

implicitly, through the encoding its validator performs to check an optimized program. Moreover, the

Alive2 semantics properly avoids collapsing undef’s non-determinism when interacting with the memory

mode—contrary to our current memory model—but it under-approximates its semantics elsewhere (per the

paper [LLH+21], they “only allow an argument to be either fully undef or not undef at all”). Moreover, as

far as we can tell, Alive2 does not support pointer-to-integer casts. These approximations are sound for

bug-finding, only straying Alive2 farther from completeness, but are incompatible with verification. Those

differences aside, Alive2 could be a rich source of test cases for VIR. One challenge is that most of the Alive2

test cases aren’t executable (they are open program fragments before/after optimization), so it is not clear

how we can use them in conjunction with VIR semantics. One could state the expected refinement relation

between such program fragments as theorems and try to prove them, but finding a more automatic way of

using Alive2 tests, perhaps by making them executable by (randomly) instantiating their free variables,

would be desirable.

Others have focused their attention more specifically on characterizing the LLVM’s undefined behav-

iors [LKS+17] and its concurrency semantics [CV17]. Even more specifically, modeling realistic memory

models for LLVM is an active area of research in itself [KHM+15a, LABS12, MGZ15, LHJ+18b], which is

closely connected to similar efforts for low-level languages like C [MGD+19]. None of these works rely on

a mechanized denotational semantics as we do, which constitutes the core of our contribution. Nonetheless,

many of these works cover semantic features that VIR does not yet tackle, and as such are major sources of
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inspirations for the future of VIR. In particular, improving the VIR memory model is an important next

step. For example, the memory model presented here does not support storing undef, or, more generally,

elements ofV𝑢 in the heap, a limitation shared with Vellvm and most of the prior work. This forces the

semantics to use a PickV () event as part of a store operation, which in turn invalidates store-forwarding

optimizations (where a load following a store to the same location is replaced by the stored value). There

are similar issues with respect to the proper treatment of poison and undef with respect to intrinsics

and external function calls, that remain to be resolved. VIR currently models the behaviors of GEP and

pointer-to-integer casts via interactions with the memory model, a natural model for these constructions

as their semantics depends on details about how data is laid out in the heap; however, this also means

that proving correctness of program transformations that move or eliminate such operations is nontrivial.

For instance, in addition to the usual requirements about the scopes of program identifiers, one would

have to prove that a call to alloca doesn’t affect the result of GEP in order to move a use of the GEP

instruction around an alloca. The memory model provided in Juneyoung et al. [LHJ+18b] addresses this

issue, ensuring that GEP is truly pure, and should hence be part of the design of the future rework for VIR’s

memory model. Despite such remaining challenges, we are optimistic that the design of VIR provides

the necessary ingredients to model LLVM semantics with higher fidelity—ITrees provide the ability to

introduce and handle nondeterministic events at various levels of interpretation, and the use of the propT𝐸

monad provides a rich semantic space for describing the allowed behaviors.

LLVM IR’s semantics is complex, but also evolving: subtle interactions between poison and undef led

to a proposal [LKS+17] to simplify the under-defined values semantics via a freeze instruction, which in

VIR affects where PickV () events occur; it was extremely straightforward to add support for freeze to

VIR. Similarly, there is ongoing work on a “provenance” mechanism for specifying which pointer-to-integer

casts are allowed, which is also subject to change. Maintaining a formal development of the size of VIR with

such evolutions is a major challenge that we believe can be mitigated by the modularity of its semantics.

Executability Our use of monadic interpreters based on interaction trees allowed us to get an exe-

cutable VIR semantics with very little effort, which enabled testing of the semantics early on. As mentioned

above, one main contribution of the JSCert project is the proof of correspondence between the specification

and a reference implementation. Similarly, both the Vellvm and CompCert projects have spent substantial
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efforts during their development to define interpreters and prove them equivalent to the relational semantics.

Maintaining two artifacts incurs the cost of synchronizing them, which can become especially painful as

a language evolves. Any change to the semantics has to be echoed in the interpreter and the proof fixed.

With our approach, almost all of the semantics is shared with the interpreter, with the exception of the

implementation of the non-deterministic effects of the language.

As a measure of the impact of this design on the part of the development related to the interpreter, we

offer an (admittedly) rough comparison with Vellvm, which, as it also aims to formalize LLVM IR, is the

Coq development most like VIR.

Vellvm VIR

(extra) lines of Coq code to define interpreter: ∼500 ∼130

(extra) lines of Coq code to prove refinement: ∼1000 ∼250

The overhead of verifying the VIR interpreter is significantly smaller; Vellvm supports significantly

fewer LLVM types and operations than VIR, so the numbers in the Vellvm column would be somewhat larger

for a “fairer” comparison. The Vellvm proof that the interpreter refines the semantics proved the result

only for a single small step, eliding the coinductive outer reasoning to establish co-termination of the two

semantics, something that we get for free. The VIR results are therefore simpler, shorter, and much stronger.

With respect to the resulting interpreters, there are also significant differences: The Vellvm semantics

(due to its propositional nature) axiomatized properties about global memory and state initialization and,

consequently does not extract an executable memory model (it punts to an C implementation), whereas

VIR extracts the memory model too—the Vellvm interpreter itself is much less trustworthy than VIR’s.
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Part II

A Layered Equational Framework
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Chapter 5

Layered Monadic Interpreters

In Part I, we saw a modular and executable semantics for the sequential semantics of LLVM IR, based

on layered monadic interpreters. This part discusses a general metatheory for reasoning about layered

interpreters, giving an extensible theory for lifting interpreters and structural rules.

Monadic computations built by interpreting, or handling, operations of a free monad are a compelling

formalism for modeling language semantics and defining the behaviors of effectful systems. The resulting

layered semantics offer the promise of modular reasoning principles based on the equational theory of the

underlying monads. However, there are a number of obstacles to using such layered interpreters in practice.

With more layers comes more boilerplate and glue code needed to define the monads and interpreters

involved. That overhead is compounded by the need to define and justify the relational reasoning principles

that characterize the equivalences at each layer.

This chapter addresses these problems by significantly extending the capabilities of the Coq interac-

tion trees (ITrees) library, which supports layered monadic interpreters. We characterize a rich class of

interpretable monads—obtained by applying monad transformers to ITrees—and show how to generically

lift interpreters through them. We also introduce a corresponding framework for relational reasoning

about “equivalence of monads up to a relation 𝑅”. This collection of typeclasses, instances, new reasoning

principles, and tactics greatly generalizes the existing theory of the ITree library, eliminating large amounts

of unwieldy boilerplate code and dramatically simplifying proofs.

Several features of ITrees make them well suited to defining semantics. First, event signatures can be

combined through a disjoint union operation: an ITree of type itree (E +' F) can have events drawn from

either E or F, allowing for a modular definition of computations. Second, it is possible to write interpreters

for the events in an ITree. We write h : E { M to mean that h is an event handler that maps events in the

signature E into computations in the monad M. Then interp h : ∀ A, itree E A → M A maps an ITree

computation into a monadic computation by “handling” the events in E, which gives them a semantic

definition according to the operations of M. For instance, one might interpret “read” and “write” events into
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a state monad. Taken together, the signature of events and event handlers allows for the decomposition

of effects into stages, modularizing the semantics in a style akin to algebraic effects [PP03b]. Third, by

implementing the itree E monad coinductively, divergence is given native support, allowing for generic

fixed-point combinators to be defined without compromising the (lazy) computability of the resulting

definitional interpreters. The type itree voidE (where voidE is the empty event signature, and is the

unit of +') is isomorphic to Capretta’s delay monad [Cap05], which was designed specifically to represent

nonterminating computations in type theory. Finally—and perhaps most importantly for the purposes of

formal verification—ITrees come equipped with a rich relational theory: t ≈𝑅 u means that ITrees t and u

are weakly bisimilar and produce answers related by 𝑅. This relational theory generalizes the notion of

program equivalence (given an equivalence relation 𝑅), and the relational theory can be lifted to the other

monads obtained by interpretation of ITrees, yielding a way to reason formally about monadic semantics.

Past experience suggests that ITrees provide a very comfortable semantic toolbox, whether to reason

about the functional correctness of programs or the correctness—in terms of equivalence or refinement—of

program transformations. The original paper [XZH+20] illustrated the approach by proving the correctness

of a toy compiler from imp, an imperative language, to asm, a simplified assembly language. The story is

pleasantly clean: a termination-sensitive result is established without the need for any explicit coinduction;

the compiler is proved in a compositional fashion (open pieces of programs can be related to their compilation

in isolation); and the proof method is heavily equational, relying on ≈𝑅 to allow tedious but easy-to-produce

proofs by rewriting.

The ITrees approach has also been shown to scale. The most ambitious project in this realm, to date, is

VIR, as described in Part I. In VIR, the semantics of the sequential fragment of LLVM IR has been formalized

using ITrees, leading to a remarkably simplified semantics when contrasted with the previous iteration

of the project [ZNMZ12], which was based on a more traditional operational semantics. In particular,

the program counter and the heavy invariants it entails have disappeared. When it comes to reasoning,

the benefits of the ITree semantics have been evaluated in several dimensions. With respect to LLVM IR

transformations, simple peephole optimizations admit local, simple proofs, and proving a block fusion

transformation correct can be done at a high level of abstraction—verifying a transformation that only

impacts control-flow does not depend on the implementation of the state.

50



While the results above are a promising testament to the viability of ITree-based monadic interpreters

for formal verification, things do not remain as smooth at the scale of Vellvm as they were for imp and asm

(and even at the small scale, the situation can be improved). In this dissertation, we identify and provide

solutions to the following pain points that are impediments to using ITrees at scale:

1. As mentioned above, the primary feature of the free monad is its extensibility: there is a natural

inclusion of type itree E into itree (E +' F)with an event signature enriched via a coproduct. That

inclusion necessitates a renaming (to add the left injection), and such renamings can be discharged

with a simple typeclass (provided by the ITree library). However, when it comes to using interp,

which handles all of the events of an ITree, the existing typeclasses are inadequate: a handler

h : E { M cannot readily be lifted to a handler h' : (E +' F) { M (and such a lifting may not

always be possible), which means that the user has to hardcode the syntactic structure of the event

signatures for handlers and interpreters, breaking modularity. Existing techniques, for instance the

automatic injections used in Swierstra’s data types à la carte [Swi08] (and re-implemented in the

ITree library), do not provide an adequate solution.

2. When modularly structuring a semantics as complex as Vellvm’s, interpretation takes place in

layers: several interpreters are successively composed, each handling different events. However,

while free monads, and ITrees in particular, give the freedom to interpret into any monad, we

are now left to ponder how to interpret from other structures. For example, consider a han-

dler h : E { stateT S (itree F) that interprets E events into the monad stateT S (itree F),

where S is the notion of state considered and stateT S is the state monad transformer defined as

fun M R ⇒ S → M (S * R) and interp h is of type itree E { stateT S (itree F). If we have an-

other handler f : F { M, we would like to compose the interpreters: (interp f) ◦ (interp h) should

have type itree E { stateT S M, but the left-hand use of interp works over a state-transformed

ITree, not an ITree, so this code does not typecheck—we require a much more general notion of

“interpreter” to build such interpretation stacks. With the existing ITree library, such compositions

must be constructed painfully and repetitiously by hand.

3. Beyond these issues that arise when building complex interpreter stacks, we also need to be able to

51



reason about the resulting computations. Consequently, we need versions of the relational theories

(monad laws, etc.) for every monad in sight! In practice, this means that we need mechanisms

to lift the equational theory of one monad through a monad transformer to obtain a transformed

theory. It is not enough to be able to construct proofs of equivalences or refinements, we also need

inversion principles to extract information from such proofs. It is not at all obvious how to build such

a relational reasoning framework generically.

Contributions In this part, we propose solutions to the problems described above. After giving the

necessary background about the ITree library and its current pain points in Section 5.1, we tackle the

problem of building layered monadic interpreters.

Section 5.2 introduces several novel typeclasses: Trigger, Subevent, and Interp, along with a generic

operation called over, that collectively address the issues with modularity of event signatures and construc-

tion of layered interpreters. Along the way, we see how to define instances of our new typeclasses for a

variety of frequently-used monads: itree E, state, error, and Prop.

Section 6.1 develops new tools for relational reasoning, centered on a typeclass eqmR (for “equivalence of

monads up to R”)—a generalization of ITrees weak bisimulation, ≈𝑅 . We identify a suitable axiomatization

of its properties and define operations that lift it through monad transformers. A key, and, we believe,

novel idea here is the concept of the image of a monadic computation, which precisely characterizes its

possible results. The image is defined purely in terms of eqmR, and it is a key ingredient needed to define

the equational theory.

Section 6.2 uses eqmR to define the properties of the new typeclasses introduced in Section 5.2, providing

a rich framework for reasoning about layered monadic computations.

Section 7 describes how this framework pans out in practice, where a key contribution is a collection

of tactics that provides type instantiations to help disambiguate typeclass resolution. We evaluate

the effectiveness of this new infrastructure by porting the imp-to-asm proofs from the original ITrees

development—we find that the resulting proofs are substantially less ad hoc, more compositional, and

considerably simpler.

Section 7.3 situates our contributions with respect to related work, and Section 7.4 concludes with a

discussion about further techniques and future work.
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Implementation The ideas in this part are packaged as a Coq development [YZZ22] and all of the

properties presented here have been proved in Coq. Although some of our contributions are Coq-specific

(e.g., the need to deal with Proper instances for Coq’s setoid rewriting and the details of our tactics), we

believe that most of the typeclasses and constructs proposed here could be profitably implemented in other

settings as well.

5.1 Interaction Trees and Monadic Interpreters: Background and Short-

comings

Interaction Trees [XZH+20] (ITrees) have recently emerged in the Coq ecosystem as a rich toolbox to build

compositional and modular monadic interpreters. One of its main benefits comes from its equational

framework that allows reasoning about equivalence and refinement of computations. Through this section,

we introduce the necessary background information to understand the theoretical and practical limitations

that arise when using the framework at scale.

5.1.1 Scaling Up: The Shortcomings of Layered Monadic Interpreters

This promise of modularity is deceitful when used at scale: layering monadic interpreters can become un-

wieldy.
LLVM IR

Intrinsics itree E0

itree VellvmE

EnvGGlobal env stateT (itree E1)

Local env EnvLstateT (itree E2 )*EnvG

propositional model

itree E4 (     * (         * (         *      )))     → Pℙ
itree E5 (     * (         * (         *      )))     → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

Memory MemstateT (itree E3)* EnvL * EnvG

Figure 5.1: Vellvm’s semantics: a stack of interpreters

Let’s take a look at the VIR semantics to see what

can go wrong. When dealing with large languages,

the naïve interpretation scheme sketched above,

which interprets all of its events at once, is unde-

sirable for a couple reasons. First, some effects may

be implemented in terms of others: memory opera-

tions, for instance, may introduce undefined behav-

ior events. Second, decoupling the interpretation

of different categories of events modularizes the

monadic structure they introduce, improving the modularity of the semantics and the robustness of the
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Definition handle_state {E} :
stateE { stateT S (itree E) :=
fun _ e s ⇒ match e with

| Get ⇒ Ret (s, s)
| Put s' ⇒ Ret (s', tt)
end.

Definition pure_state {S E} :
E { stateT S (itree E) :=
fun _ e s ⇒ Vis e (fun x ⇒ Ret (s, x)).

Definition interp_state {E} :
itree (stateE +' E) { stateT S (itree E) :=
interp (case_ handle_state pure_state).

Figure 5.2: State interpreter from the ITree library

formalization. Such decoupling leads to proof techniques allowing for some of the effects to remain

uninterpreted during a proof.

Thus, it is desirable that complex monadic interpreters be organized as layers of interpretation. Figure 5.1

reproduces the structure of VIR’s interpreter: a piece of LLVM IR syntax is first represented as an ITree

over a rich signature before its effects are successively implemented, leading to a richer monadic structure

at each layer. Intuitively, this sequence of interpreters implement: 1. calls to pure intrinsics interpreted

as pure Coq functions, 2. the global state interpretation, 3. the local state interpretation, 4. the memory

model interpretation, 5. the nondeterministic concretization of undef values, and 6. the nondeterministic

refinement of undefined behaviors.

However, there are two glaring issues for both defining and working with layered interpreters, which

are presented as follows.

5.1.1.1 Problem 1: Lifting Partial Handlers for Whole Signatures

The first difficulty is defining a handler for partial interpretations, i.e., interpreting a particular effect out of

a sum of events while leaving the others uninterpreted. The toy example that interprets away the cellE

signature while preserving printE should be factored into a part that handles cellE in isolation and a

generic part that injects the remaining events.

The ITree library provides some applicable tools. Figure 5.2 reproduces the standard interpreter

for memory events, stateE, where S is the notion of state considered and stateT S is the state monad

transformer defined as fun M R ⇒ S → M (S * R). To be reusable, the stateE handler corresponding to

our example cellE handler is defined in handle_state, which is parametric in the leftover ambient signature

E. The branch implementing printE is captured generically in pure_state, since the implementation does not

depend on the effect that remains uninterpreted. Finally, since +' forms a coproduct for an indexed function,
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Definition handle_local {E} {̀FailureE -< E} :
(LocalE k v) { stateT map (itree E) :=

fun _ e env ⇒
match e with
| LocalWrite k v ⇒ ret (add k v env, tt)
| LocalRead k ⇒
match lookup k env with
| Some v ⇒ Ret (env, v)
| None ⇒ fail
end

end.

Variable (E F G H: Type → Type).
Context {̀FailureE -< G}.
Notation Effin := (E +' F +' LocalE +' G).
Notation Effout := (E +' F +' G).

Definition E_trigger {M} : ∀R, E R → stateT
M (itree Effout) R :=

fun R e m ⇒ r � trigger e ;; ret (m, r).

Definition F_trigger {M} : ∀R, F R → stateT
M (itree Effout) R :=

fun R e m ⇒ r � trigger e ;; ret (m, r).

Definition G_trigger {M} : ∀R , G R →
stateT M (itree Effout) R :=

fun R e m ⇒ r � trigger e ;; ret (m, r).

Definition interp_local_h := (case_
E_trigger (case_ F_trigger (case_
handle_local G_trigger))).

Definition interp_local : itree Effin {
stateT map (itree Effout) :=

interp_state interp_local_h.

Figure 5.3: Interpreting Vellvm’s register map

a generic case_ combinator builds the handler used to interpret an arbitrary computation containing stateE

events, as shown in interp_state.

So surely we should be able to happily simplify the definition of handle_cell by using the standard

library’s stateE events instead of specialized cellE, and directly defining interp_cell as interp_state? Un-

fortunately, we cannot! A slight mismatch creeps in: our previous computations have been defined over the

printE +' cellE signature, while interp_state forces stateE to be in the head position: stateE +' printE.

We are forced to either change our definitions to line up the signatures, or to duplicate the definitions.

These structural constraints add up to create bureaucratic clutter in large-scale developments. Fig-

ure 5.3 reproduces the Vellvm interpreter layer implementing the register map—this interpreter defines the

translation from the Global env level to the Local env level of Figure 5.1. With this setup, events in the

register map, defined in the LocalE signature, are structurally in the third position of the signature (see

Effin) at the site where the interpreter of this handler is used, and three auxiliary definitions for triggering

E, F, and G events along with fiddly uses of case_ are needed to define interp_local_h.

Also, notice the constraint Failure -< G in the context, which informally represents “any event G that

supports failure”. This corresponds to the constraint mechanism introduced by Swierstra’s Data Types à la

Carte [Swi08] to automate the renaming of triggered events. We discuss its limitations and introduce a

more expressive substitute in Section 5.2.3.
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Simply reorganizing the shape of the signature is impossible due to constraints that do not compose in

various places of the semantics, forcing developers to painstakingly handcraft special-case interpreters.

Naturally, this definition is very fragile to the introduction of additional effects, in blatant contradiction to

the modularity otherwise achieved.

5.1.1.2 Problem 2: Building Layered Interpreters

The second issue in building layered interpreters is the complete lack of a theory for interpreting computa-

tions from monads other than ITree. The existing interp implementation is parametric in its target monad,

but it is not in its source: interp (h : E { M) : itree E { M is defined for any iterative monad M.

Sticking to the same implementation of the register map, we see in Figure 5.1 that it occurs after the

implementation of the global state. As a consequence, the domain of computation manipulated at this

stage is already not a plain ITree, but rather stateT EnvG (itree E1) for some signature E1. This problem

reoccurs at each subsequent level.

The previous approach to this issue is defining ad hoc solutions for each situation. One can “interpret”

a computation in stateT EnvG (itree E) by exposing the definition of the stateT transformer as a pure

function of the initial state, and therefore interpreting the computation pointwise. Such construction breaks

the abstraction of layered monadic interpretation.

In Section 5.2, we introduce the appropriate abstract structures necessary for the principled construction

of layered interpreters, providing a general and clean solution to both problems from the programmatic

perspective. Of course, defining monadic computations in this modular, layered way is only half of

the problem. For formalization, we also need to develop the corresponding metatheory for reasoning

equationally about these constructions. That is the subject of Chapter 6.

5.2 Building Layered Monadic Interpreters

In this section, we introduce (1) a novel over combinator for lifting partial handlers to whole signatures, (2)

a general characterization of the trigger combinator, which interplays with a novel interp combinator for

building layered interpreters. In addition, we propose a new kind of event constraint which characterizes
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isomorphisms between sums of events, where we use typeclass resolution to infer the correct type injections

for the over and trigger combinators.

The interpreter from Figure 5.2 is unsatisfactory because of the need for manual annotations of inr1 and

inl1. To simplify this interpreter, we define a generic function that injects handle_state into an arbitrary

signature containing stateE. There are two main challenges in defining this automatic injection.

First, injecting the handle_state handler induces auxiliary handlers, such as pure_state, that perform

no action on the events: these auxiliary handlers must be inferred and applied to the uninterpreted remainder

of the sum. Second, when the injected handler handle_state acts on a signature containing stateE (where

the signature may contain other events), it needs to return the remainder of the signature. This is trivially

achieved when hard-coding the shape of the signature as stateE +' E, but cannot be captured by the

current inclusion constraint stateE -< F.

These challenges motivate respectively the definition of triggerable monads (Section 5.2.1) and the

generalization of the inclusion of signature into a decomposition of signatures (Section 5.2.2). These

two building blocks are sufficient to define the automatic injection of handlers addressing Problem 1

(Section 5.2.3). Problem 2 finds its resolution by the additional introduction of Interpretable monads

(Section 5.2.4). While motivated by concrete problems, over, interp, and trigger also form a cohesive

equational theory: Section 6.1 and 6.2 describe the equational properties of these combinators.

5.2.1 Triggerable Monads

Recall the trigger combinator from Section 5.1. It is defined as trigger e := Vis e (fun x ⇒ x), captur-

ing the idea of a “minimal” impure computation performing an uninterpreted event—in this case, specialized

to the ITree monad. The pure_state function from Figure 5.2 mirrors this intent, but in the monad

stateT S (itree E); it additionally makes explicit that this minimal computation does not affect the state.

We capture this notion into a Trigger typeclass, corresponding to an action (event) having a specific

monad M as its domain of action.
Class Trigger (E: Type → Type) (M: Type → Type) := trigger: E { M.

On the implementation side, it is worth mentioning that this trigger operator does not explicitly

mention the monadic structure of M. This is inspired by the “unbundled” approach of Spitters and van der
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Weegen [SvdW11], that proves beneficial for mathematical formalizations in type theory. All typeclasses in

our framework use this unbundled style.

Naturally, ITree.trigger20 is an instance for itree E (where E is of type Type → Type), and pure_state

for stateT S (itree E). However, it is possible to capture a broader class of instances at once, as we will

see shortly.

Since we also want to reason about the structures we introduce, this new definition raises the ques-

tion of the axiomatization of the trigger operation. In the case of ITrees, there are two characteristic

equations supported by trigger. First, when seen as a handler, its interpretation is the identity, i.e., that

∀ t, interp trigger t ≈ t. Second, when seen as an interpreted computation, it coincides with the effect

of the handler on the event, i.e. ∀ h e, interp h (trigger e) ≈ h e. At this point, we lack the tools

to generalize these equations; in particular, we would need to be able to interpret a computation in the

monad of interest, rather than an ITree specifically. Therefore, we delay the question of axiomatizing these

properties until Section 6.2.

5.2.2 Automatic Injection and Decomposition of Signatures

Let us temporarily set aside triggerable monads to turn our attention to the second issue: how to remove

the hard-coded shape of the source event signature, yet reconcile that with a requirement that the target

signature removes the handled event.

We achieve this by first enriching the typeclass responsible for expressing that a signature is a super-set

of another. The current constraint, E -< F, simply requires an embedding of E into F. Instead, we introduce

a typeclass that explicitly computes the complement to E in F.

The resulting relation is therefore three-placed: the constraint Subevent E F G, written E +? G -< F,

provides an isomorphism between the types E +' G and F:
Class Subevent {E F G : Type → Type} : Type := { split : F { E +' G ;

merge : E +' G { F }.

From a resolution standpoint, one should think of it as taking as input the ambient signature F—from the

return type of the computation being built—and the sub-signature E—from the concrete object manipulated,

typically a triggered event or a handler—and inferring from this information the complement G.
20This style of colored text corresponds to Coq syntax
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Instance Subevent_Base {A B}: A +? B -< A +' B.
Instance Subevent_refl {A} : A +? void1 -< A.
Instance Subevent_Sum_In {A B C D}
`{A +? D -< B} : (C +' A) +? D -< C +' B.

Instance Subevent_Sum_Out {A B C D}
`{A +? D -< B} : A +? C +' D -< C +' B.

Instance Subevent_commute {A B C}
{Sub: A +? B -< C} : B +? A -< C.

Instance Trigger_ITree_base {E} : Trigger E (itree E) := fun _ e ⇒ trigger e.
Instance Trigger_ITree {E F G} {̀E +? F -< G}: Trigger E (itree G) :=
fun _ e ⇒ trigger (merge (inl1 e)).

Instance Trigger_MonadT {E F G} {̀E +? F -< G} {T : (Type → Type) → Type → Type}
{T_MonadT: MonadT T} : Trigger E (T (itree G)) :=
fun _ e ⇒ lift (trigger e).

Figure 5.4: The trigger typeclass

Instance inference gets more involved with Swierstra’s injection, especially when combining several

constraints. We characterize to this end the algebraic properties of this abstract sum operation +? as

instances. Essentially, we state that it extends +', admits void1 as a unit, allows for injections of +' on

either side of the decomposition, and commutes. We constrain the use of these instances — commutation in

particular — to prevent the inference mechanism to diverge: we refer the interested reader to our formal

development. Each of these instances come with a proof of isomorphism, thus guaranteeing soundness of

the inference.

With this definition of Subevent in place, we can use it to generically define, once and for all, Trigger

instances as shown in Figure 5.4. Events of type E can be triggered into an ITree either at the same signature,

or an extension of it. Moreover, rather than painfully (and manually) introducing ad hoc instances such as

pure_state, we can transport Trigger instances through arbitrary monad transformers. The lift operator is

defined on all monad transformers T : (Type → Type) → Type → Type, where lift transforms a monad

M : Type → Type into a monad T M.

5.2.3 Automatic Injection for Handlers

We now have all the necessary tools to properly solve Problem 1 by injecting handlers of a restricted

signature into a larger ambient one.

Consider a handler h : E { M implementing a set of effects described by E into an arbitrary monad M.
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Definition interp_state {E F} {̀stateE +? E -< F} : itree F { stateT S (itree E) :=
interp (over handle_state).

Definition interp_local {E1 E2 F} {̀LocalE +? E1 -< F} {̀FailureE +? E2 -< E1}
: itree F { stateT map (itree E1) := interp (over handle_local).

Figure 5.5: State interpreter and Vellvm’s register map interpreter using over

The function over h transports h into an implementation of a larger signature F into the same monad:
Definition over {E F G M : Type → Type} {̀E +? G -< F} {̀Trigger G M}
(h : E { M) : F { M :=
fun _ f ⇒ match split f with
| inl1 e ⇒ h e
| inr1 g ⇒ trigger g
end.

The function relies on the constraint E +? G -< F to know how to case analyze on a F event whether it

corresponds to the embedding of an E event or not. In the former case, it simply calls its implementation h.

In the latter case, it relies on the Trigger G M constraint to know how to embed this event into M.

Figure 5.5 illustrates the cleaned-up definitions for the ITree’s state interpreter and Vellvm’s register

map implementation. The interp_state definition is straightforwardly simplified: no explicit extension

of the handler is needed, and the return type uses the complement specified in the typeclass constraint.

In the second case, notice that we can easily enforce that the source signature contains both LocalE and

FailureE, while the target signature is only stripped of the former. As intended, these interpreters can

consequently be used regardless of the structural position of the interpreted signature in the ambient

context. The equational theory of over is discussed in Section 6.2.

5.2.4 Interpretable Monads

We now focus on the second obstacle to the compositional definition of layered monadic interpreters:

interpreting monadic structures other than pure ITrees. When staging a stack of interpreters, we end

up having to interpret from monads such as “stateT S (itree E)”: this is the motivation for a notion of

interpretable monads, which are layered monads that satisfy the structural properties for interpretation.

Interpretable monads must encompass monads built from ITree through layers of interpretation: they should

essentially be iterative monads that can trigger events. Furthermore, interpretable monads must interpret

into interpretable monads, as we aim to stack layers of interpretation. The typeclass we need to provide
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generic constructions and axiomatizations over the computational structure suitable to be part of a monadic

interpreter more specifically generalizes the ITree.interp function.
Class Interp (IM T: (Type → Type) → Type → Type) (M : Type → Type) :=
interp : ∀(E : Type → Type) (h: E { M), T (IM E) { T M.

Intuitively, an instance of this class expresses that a structure akin to ITrees can lift handlers into a

structure M. The shape of the source structure is, however, further specified. At its base, it should contain a

family of monads IM indexed by signatures—itree is one example. Intuitively, this minimal structure is the

one upon which the implementation of the effects will be lifted. To compose cleanly, a monad transformer T

is assumed on the source, and preserved into the target: previously introduced effects are left untouched.21

The interp function provided by the ITree library is a particular instance of this typeclass, where IM is

itree, T is the identity transformer, and M is an arbitrary iterative monad.

With this definition, very generic instances can be provided to build layered interpreters compositionally.

Following [JG09], we make explicit the higher-order functorial structure of monad transformers: they

directly transport indexed functions via hfmap, as well as functions through any functor, per the operations

shown below.
Class HFunctor (f : (Type → Type) → Type → Type) :=
{ ffmap : ∀A B g, Functor g → (A → B) → f g A → f g B;
hfmap : ∀g h, (g { h) → (f g { f h) }.

This functorial structure is sufficient to ensure that monad transformers preserve the fact that a structure

is a valid source of interpretation, as is captured by the following instance:
Instance stack_interp {T IM : (Type → Type) → Type → Type} {M : Type → Type}

{HFunctor T} {IterativeMonad M} {Interp IM Id M} : Interp IM T M :=
fun E h R t ⇒ hfmap (interp h) t.

Requiring in the Interp assumption the transformer parameter to be Id forces the stack to be built

by adding new effects at the bottom, eliminating ambiguity when inferring types — alternate usages can

be manually recovered. In practice, we work with a more specialized instance, fixing IM to be itree, to

lighten up the unification problems arising when using these highly overlapping and ambiguous typeclasses.

Combined with interp as a base instance, we can build interpreters from any structure built by applying

monad transformers atop of the ITree monad, resolving Problem 2.
21Because of the ’unbundled’ approach, the structural constraints (such as well-formedness properties of their operators) on this

multi-parameter typeclass are not apparent here.
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Through this section, we have introduced principled tools that clean up the definitions of layered stacks

of interpreters. To do so, we have identified general structures whose particular instances were used in

the ITree library: triggerable monads, decomposition of signatures, and interpretable indexed monads.

What remains to be defined is the infrastructure needed to reason about these definitions. In the following

section, we start introducing their equational theory.
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Chapter 6

Reasoning About Layered Monadic Interpreters

6.1 A Composable Equational Theory for Monads

Monadic interpreters come with an alluring promise: equivalences or refinements of computations can be

established equationally. Part of this reasoning naturally relies on the domain-specific algebraic laws that

a given monad satisfies. But a significant structural equational theory—relevant to essentially all of the

monads in our layered interpretations—is equally necessary. These theories can be painfully (re-)discovered

and manually implemented for each monad, but that approach does not scale in practice.

To alleviate this problem, we provide through this Section a rich equational axiomatization of the

monadic structures that arise from the construction of layered monadic interpreters. This theory both

refines the one provided by ITrees, and generalizes it greatly, notably by axiomatizing the new constructions

introduced in Section 5.2. We present in Section 6.1.4 and 6.2 how these theories can be cleanly transported

by monad transformers and interpretation, lightening the burden put on a user when building their own

layered interpreter.

More specifically, Section 6.1.1 introduces eqmR, the family of relations over monadic computations

we consider—one can think of it as a generalization of eutt. Section 6.1.2 defines the image of a monadic

computation, allowing for the definition of the enriched set of monadic laws we axiomatize and prove

to hold for standard monads in Section 6.1.3. Finally, we describe in Section 6.1.4 the transport of these

structure through monad transformers to ease once and for all the construction of the structures used in

layered interpreters, before discussing cross-monad relations.

6.1.1 Equivalence and Relations between Monadic Computations

A monad only deserves its name if it satisfies the well-known three monad laws. The ret operation should

be a unit to the left of the bind (𝑥 ← ret 𝑎 ;; 𝑘 𝑥 = 𝑘 𝑎) and to its right (𝑥 ←𝑚𝑎 ;; ret 𝑥 =𝑚𝑎). The bind

operation should additionally be associative (𝑏 ← (𝑎 ←𝑚𝑎 ;; 𝑓 𝑎) ;; 𝑔 𝑏 = 𝑎 ←𝑚𝑎 ;; (𝑏 ← 𝑓 𝑎 ;; 𝑔 𝑏)).
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Reflexive 𝑅
Reflexive (≈𝑅)

Refl 𝑃𝐸𝑅 𝑅

𝑃𝐸𝑅 (≈𝑅)
PER

𝑚𝑎 ≈𝑅1 𝑚𝑏
𝑚𝑏 ≈𝑅2 𝑚𝑐

𝑚𝑎 ≈𝑅2◦𝑅1 𝑚𝑐
RelComp

𝑒𝑞𝑚𝑅(†𝑅) ≃ †(𝑒𝑞𝑚𝑅 𝑅) Transpose

𝑚𝑎 ≈𝑅1 𝑚𝑏 𝑅1 ⊆ 𝑅2

𝑚𝑎 ≈𝑅2 𝑚𝑏
Mono

𝑚𝑎 ≈𝑅 𝑚𝑏 𝑚𝑎 ≈𝑅′ 𝑚𝑏
𝑚𝑎 ≈𝑅∧𝑅′ 𝑚𝑏

Conj

𝑚1 ≈𝑅𝐴⊗𝑅𝐵 𝑚2
fmap fst𝑚1 ≈𝑅𝐴 fmap fst𝑚2

ProdFst

𝑚1 ≈𝑅𝐴⊗𝑅𝐵 𝑚2
fmap snd𝑚1 ≈𝑅𝐴 fmap snd𝑚2

ProdSnd

fmap fst 𝑚1 ≈𝑅𝐴 fmap fst 𝑚2
fmap snd𝑚1 ≈𝑅𝐵 fmap snd𝑚2

𝑚1 ≈𝑅𝐴⊗𝑅𝐵 𝑚2
Prod

𝑚1 ≈𝑅𝐴 𝑚2
fmap inl𝑚1 ≈𝑅𝐴⊕𝑅𝐵 fmap inl𝑚2

SumL1

𝑚1 ≈𝑅𝐵 𝑚2
fmap inr𝑚1 ≈𝑅𝐴⊕𝑅𝐵 fmap inr𝑚2

SumR1

𝑚1 ≈𝑅𝐴⊕𝑅𝐵 𝑚2
∀ 𝑎1 𝑎2, 𝑅𝐴 𝑎1 𝑎2 → 𝑅𝐶 (𝑓1 𝑎1) (𝑓2 𝑎2)
∀ 𝑏1 𝑏2, 𝑅𝐵 𝑏1 𝑏2 → 𝑅𝐶 (𝑔1 𝑏1) (𝑔2 𝑏2)

fmap (case 𝑓1 𝑔1) 𝑚1 ≈𝑅𝐶 fmap (case 𝑓2 𝑔2) 𝑚2
Sum

Figure 6.1: OK eqmR Laws (Well-formedness Laws of EqmR)

This statement is however too naive, hiding a major difficulty: these equations have no hope to hold

up-to equality. In the case of a coinductive structure such as ITrees, for instance, even eta-laws do not

hold with respect to eq, Coq’s equality. One therefore needs to switch to a different notion of equivalence,

namely, (strong) bisimulation, which is defined the the ITree library as eq_itree. While eq_itree can be

used to prove the monad laws, it is still too strong for some iterative laws and interpretation laws; for these,

we need weak bisimilarity, i.e., eutt. The conclusion is not surprising: monads should come equipped with

their own notion of equivalence of computations.

But monadic interpreters are used to prove more than program equivalence. For instance, the original

ITree paper [XZH+20] establishes the correctness of a compiler. This is achieved by parameterizing eutt

by a relation on computed values: eutt specifies that weak bisimilarity is the prime notion to compare

computations, and lifts an arbitrary relation on the computed values in the process. This extension not only

allows for relating heterogeneous computations, but provides the foundations for establishing bisimilarity

results following a relational program logic style [BKBH09].

We therefore work with monads M equipped with an “equality of monads up to 𝑅”, a family of relations:

eqmR A B (R : A → B → Prop) : M A → M B → Prop.We write ≈𝑅 in lieu of eqmR R.

Figure 6.1 axiomatizes the required behavior for eqmR. Equivalences should be lifted into equivalences,

ensuring, in particular, that ≈𝑒𝑞 — written ≈ in the following — behaves as a suitable tightest notion of

equality of computations. We derive this transport from the slightly stronger request that partial equivalence
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relations (PERs) and reflexivity be preserved independently: PERs are used to define the notion of an image

as introduced in Section 6.1.2. The RelComp and Transpose rules express the standard heterogeneous

extensions of transitivity and symmetry (we write †𝑅 for the transposition of 𝑅 and ⊆ for inclusion of

relations).

As mentioned, eqmR is meant to be thought of as the basis of a relational program logic. The indexed

relation should therefore be monotone, providing a weakening rule, and ensuring compatibility with the

equivalence of relations. From Mono, one trivially derives the usual disjunction rule, but the Conj rule must

be additionally required.

Finally, anticipating Section 6.1.4, we wish to transport our equational theories via monad transformers.

Since examples such as the state and error transformers expand the return type of the computation with

respectively a product and a coproduct, eqmR should respect those too—the right column in Figure 6.1

specifies the necessary introduction and elimination rules.

We conclude this section by illustrating valid instances of eqmR over concrete monads.

Example 1. ITree.

At any signature E, itree 𝐸 is known to be a monad. But more specifically, we prove that the strong

(eq_itree) and weak bisimulation (eutt) are instances of eqmR and satisfy its laws.

Example 2. State.

Computations in the state monad are state-passing functions over a domain of states 𝑆 :

(stateM𝑆 𝑋 ≜ 𝑆 → 𝑆 ∗ 𝑋 ) . We consider the standard operations: pure computations leave the state

untouched while sequencing threads the states.

ret𝑆𝑡 𝑣 ≜ 𝜆 𝑠 ⇒ (𝑠, 𝑣) bind𝑆𝑡 𝑚 𝑘 ≜ 𝜆 𝑠 ⇒ let (𝑠′, 𝑎′) := 𝑚𝑠 in 𝑓 𝑎′ 𝑠′

Since computations in the state monad are functions, the family of relations we consider relaxes

equivalence to functional extensionality, and further lifts the relation overt the returned values. The relation

of state considered here is equality, but could be additionally relaxed to other equivalences.

𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ ∀𝑠, 𝑅 (snd (𝑚𝑎 𝑠)) (snd (𝑚𝑏 𝑠)) ∧ (fst (𝑚𝑎 𝑠)) = (fst (𝑚𝑏 𝑠))
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We prove that this definition of eqmR satisfies the required laws.

Example 3. Error.

Potentially failing computations over a type of errors 𝐸 can be implemented as a sum type errorM𝐸 𝑅 ≜

𝐸 + 𝑅 and equipped with the usual sequencing passing by valid computed value and propagating erroneous

states, as depicted to the left in the following:

ret𝐸𝑟𝑟 𝑣 ≜ inr 𝑣

bind𝐸𝑟𝑟 𝑚 𝑘 ≜ match𝑚 with

| inl 𝑒 ⇒ inl 𝑒

| inr 𝑣 ⇒ 𝑘 𝑣

end

𝑥 ≈𝑅 𝑦 ≜ match 𝑥, 𝑦 with

| inl _ inl _⇒ ⊤
| inr 𝑣1, inr 𝑣2 ⇒ 𝑅 𝑣1 𝑣2

| _, _⇒ ⊥
end

To the right is an eqmR satisfying the required laws: it lifts the relation over valid related results, and

accepts co-failure disregarding the value of the error.

Example 4. Nondeterminism.

Nondeterministic computations can be represented as sets of outcomes using Prop: prop 𝑅 ≜ 𝑅 → Prop.

This propositional account of nondeterminism gives up its computational content, but is in exchange

flexible to manipulate, allowing for modelling nondeterminism over infinite sets, as well as for specifying a

computation.

The pure computation is a deterministic one, so it builds the singleton set: ret𝑁𝐷 ≜ 𝜆 𝑎′ ⇒ 𝑎 = 𝑎′.

The bind should flatten into a single set all possible outcomes for each nondeterministically reachable

branch of the computation, i.e., bind𝑁𝐷 𝑚 𝑘 ≜ ∃ 𝑎, 𝑚 𝑎 ∧ 𝑘 𝑎 𝑏. A notion of bijection up-to relation

defines an eqmR satisfying most of the laws :

𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ (∀𝑎,𝑚𝑎 𝑎 → ∃𝑏,𝑚𝑏 𝑏 ∧ 𝑅 𝑎 𝑏) ∧ (∀𝑏,𝑚𝑏 𝑏 → ∃𝑎,𝑚𝑎 𝑎 ∧ 𝑅 𝑎 𝑏)

We highlight the situation of prop due to a use of a related structure in Vellvm, as depicted at the bottom of

Figure 5.1. However, it is instructive to notice that it does not quite satisfy the interface: the Conj rule and

the rules related to the product of relations (see Figure 6.1) are invalid.
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6.1.2 Image of Monadic Computations

The proposition𝑚𝑎 ≈𝑅 𝑚𝑏 intuitively asserts that𝑚𝑎 and𝑚𝑏 are compatible computations—weakly bisimi-

lar in the case of ITrees, for instance—and that the relation 𝑅 is a valid relational postcondition over returned

values. The axioms from Figure 6.1 provide the basis to justify this interpretation of 𝑅 as a postcondition. To

conduct relational reasoning, one needs additional structural rules that compositionally relate computations

built from combinators. For instance, the ITree library provides an equation relating sequences of compu-

tations: ma ≈𝑆 mb → (∀ x y, S x y → ka x ≈𝑅 kb y) → ma »= ka ≈𝑅 mb »= kb. This rule mirrors the

familiar Hoare-style rule for sequence by quantifying existentially over S, the intermediate postcondition.

Monadic computations expressed as sequences have a more subtle structure, though. A typical monadic

computation might return only a strict subset of the values of its return type, R, while its continuation is

always defined over all of R. By way of illustration, consider the monad itree ChoiceE where the signature

ChoiceE provides an event, choice : ChoiceE bool, encoding a binary branching indexed by a boolean.

The computation c ::= b � trigger choice;; if b then ret 1 else ret 0 triggers this external choice

event, and converts the returned boolean into a natural number. Because c has type itree ChoiceE nat,

any continuation k bound to c will be indexed over all natural numbers, but the only relevant branches

should be (k 0) and (k 1). The proof rule above may lead to spurious proof obligations. While S can

naturally always be taken sufficiently tight to rule out these spurious cases, there should be a systematic

way to strengthen it.

Following this intuition, we introduce the notion of the image of a monadic computation: interpreting

the diagonal of eqmR as a unary logic, wewant to define uniformly a notion akin to a strongest postcondition

of a computation. For an ITree, the image is, intuitively, the set of values that appear at its leaves, so the

image of c will be the set {0, 1}.

6.1.2.1 Image: A Semantic Characterization

We wish to capture abstractly the set of values possibly returned by a monadic computation. Thus we seek

to associate to each computation m : M A a predicate image m : A → Prop over its return type. Concretely,

for an ITree t, image t should be the set of leaves of t; for a nondeterministic monad, the image should
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be the set of values it may return. The challenge is defining the image without referring to the particular

structure of a given monad, a necessity for incorporating it into general structural laws.

A first intuition on this path is to consider the diagonal of eqmR: suppose m: M R is a computation in

some monad M and R is a relation at which m self-relates: m ≈𝑅 m. Since 𝑅 is a relational postcondition, all

pairs of returned values should belong to R, and the square of the image m, i.e., { (a, a) | image m a } should

be included in R.

Following this idea, one could be tempted to carve out the extra junk in R by defining the image as the

diagonal of the intersection of all relations at which m self relates:

image𝑚 𝑣
?
= ∀ 𝑅,𝑚 ≈𝑅 𝑚 → 𝑅 𝑣 𝑣

Interestingly enough, this first attempt turns out to be too naïve when considering nondeterminism; it

leads, in general, to a strict subset of the image we seek to capture. To see why, we focus our attention to

the case of propM, with eqmR defined as in Example 4.

Let (m : propM bool) be the computation that nondeterministically returns a boolean, that is, m = fun x

⇒ x = true∨ x = false. We naturally expect the image of m to contain both booleans as well. However, by

taking for relation R = {(true,false);(false,true)}, we easily see that m ≈𝑅 m holds despite R’s diagonal

being empty!

Intuitively, considering all relations is inadequate: we should only consider those whose diagonal

contains the elements it relates. To look on the side of equivalences would however be too drastic:

all reflexive relations have their diagonal coincide with the whole return type. In particular, the ITree

representing a silently diverging computation self-relates at all postconditions, we would fail to ascribe an

empty image to it.

The right intuition echoes the idea of modeling the codomain of partial functions as Partial Equivalence

Relations (PERs). PERs at which self-relation is possible always contain in their diagonal a superset of

the image we seek to define, without being forced to contain the whole type. The image is precisely the

diagonal of the smallest PER at which the computation self-relates:

imageH𝑚 𝑎1 𝑎2 ≜ ∀ 𝑅, PER 𝑅 →𝑚 ≈𝑅 𝑚 → 𝑅 𝑎1 𝑎2 image𝑚 𝑎 ≜ imageH𝑚 𝑎 𝑎
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We write 𝑎 ∈𝑚 as a short-hand for image𝑚 𝑎.

6.1.2.2 Image for itree: A Concrete Characterization

The semantic characterization of the image of a monadic computation only relies on eqmR, and can

be leveraged to axiomatize the desired theory. However, this definition gives few reasoning principles.

Therefore, we prove that in the case of the ITree monad, it coincides with the concrete original intuition: a

predicate collecting the reachable leaves. This predicate is defined inductively over the structure of the tree,

existentially collecting all branches:
Inductive Leaves {E} {A: Type} (a: A) : itree E A → Prop :=
| LeavesRet: ∀t, t ≈ Ret a → Leaves a t
| LeavesTau: ∀t u, t ≈ Tau u → Leaves a u → Leaves a t
| LeavesVis: ∀{X} (e: E X) (x: X) t k, t ≈ Vis e k → Leaves a (k x) → Leaves a t.

The structural and semantic definitions are proved equivalent, justifying the abstract definition, and

providing inductive reasoning to establish membership to the image.

Lemma 4. 𝑎 ∈𝑚𝑎 ⇐⇒ Leaves 𝑎 𝑚𝑎

6.1.2.3 The Case of stateM

We prove that the image of a stateM𝑆 computation captures exactly the set of values that can be returned

for some initial state, regardless of the final state.

Lemma 5. 𝑣 ∈𝑚 ⇐⇒ ∃ 𝑠𝑖 𝑠𝑓 , (𝑚 𝑠𝑖) = (𝑠𝑓 , 𝑣)

Notice the existential quantification on both the initial and final state.

Anticipating the axiomatization introduced in the following section, we consider how the image

predicate and the bind construct interact. Following the analogy of a strongest postcondition, it could be

hoped that the following rule universally hold:

𝑢 ∈𝑚 𝑣 ∈ (𝑘 𝑢)
𝑣 ∈ (𝑚 ;; 𝑘) ImageBind

However, this would be misunderstanding what the image expresses: while it universally captures the

tightest postcondition over the set of returned value, it cannot do so w.r.t. the effects the computation
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perform. Since the reachability of branches of the postcondition may depend on the history of effects, it is

therefore expected that it will not behave as uniformly w.r.t. bind.

To illustrate more concretely this intuition, we build over this state monad instance a counter example

to ImageBind. Fixing the state to bool, consider the following computation that returns the initial state as

value, but always sets the final state to true.

m ::= fun b ⇒ if b then (true, true) else (true, false)

The image of m contains both booleans since either can be found as returned value for a certain initial state.

In particular, false ∈ m. Now consider the continuation k ::= fun v b ⇒ (v,b) updating the state with

its argument and returning the previous state. One can think of this computation as a balanced tree with

four leaves, where each subtree admits both booleans in its image: in particular, false ∈ k false. The

branches carrying false are, however, reachable only from a state set at false: since m does not return such

state, they are unreachable branches. To sum up, false ∈ m, false ∈ (k false), but yet false ∉ (m »= k),

contradicting ImageBind.

Intuitively, the image characterizes what values a monadic computation might possibly return, but does

so in a way that is parametric in the monad definition itself. As illustrated by this example, it does not

account for information internalized by the monad, such as unreachable states. Nevertheless, the refined (if

still approximate) reasoning enabled by the image is an essential ingredient for defining precise reasoning

principles in the equational theory.

6.1.2.4 Image for errorM

As can be expected, the image over the error monad is much simpler to capture: it is either empty if the

computation fails, or the singleton of the computed value otherwise.

Lemma 6. 𝑎 ∈𝑚𝑎 ⇐⇒ 𝑚𝑎 = inr 𝑎.

6.1.2.5 Image for prop

For nondeterminism, the computation itself coincides with the image:
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𝑥 ← ret 𝑎 ; ; 𝑓 𝑥 ≈ 𝑓 𝑎 RetL
𝑥 ←𝑚𝑎 ; ; ret 𝑥 ≈𝑚𝑎 RetR

𝑅𝐴 𝑎1 𝑎2
ret 𝑎1 ≈𝑅𝐴

ret 𝑎2
Ret

(𝑎 ←𝑚𝑎 ; ; 𝑏 ← 𝑓 𝑎) ; ; 𝑔 𝑏 ≈ 𝑎 ←𝑚𝑎 ; ; (𝑏 ← 𝑓 𝑎 ; ; 𝑔 𝑏) BindAssoc

𝑚𝑎1 ≈𝑅𝐴
𝑚𝑎2 ∀𝑎1, 𝑎2, 𝑅𝐴 𝑎1 𝑎2 → 𝑘1 𝑎1 ≈𝑅𝐵

𝑘2 𝑎2

𝑥 ←𝑚𝑎1 ; ; 𝑘1 𝑥 ≈𝑅𝐵
𝑥 ←𝑚𝑎2 ; ; 𝑘2 𝑥

Bind
𝑚𝑎 ≈(imageH 𝑚𝑎) 𝑚𝑎 ImageSelf

𝑚𝑎1 ≈𝑅𝐴
𝑚𝑎2 𝑎1 ∈𝑚𝑎1

∃ 𝑎2, 𝑅𝐴 𝑎1 𝑎2 ∧ 𝑎2 ∈𝑚𝑎2
ImageL

𝑚𝑎1 ≈𝑅𝐴
𝑚𝑎2 𝑎2 ∈𝑚𝑎2

∃ 𝑎1, 𝑅𝐴 𝑎1 𝑎2 ∧ 𝑎1 ∈𝑚𝑎1
ImageR

Figure 6.2: EqmRMonad Laws

Lemma 7. 𝑎 ∈𝑚𝑎 ⇐⇒ 𝑚𝑎 𝑎.

6.1.3 Beyond Monadic Laws

We have all the tools required to define a first minimal axiomatization of the monads we accept to consider.

This interface is described on Figure 6.2 and contains three kinds of properties. As expected, the three

traditional monad laws are still required, but are expressed up-to ≈.

Next are three rules constraining properties of the image of a monadic computation. Rules ImageL and

ImageR systematically link the images of two computations that can be proved to be related by eqmR: any

point in one of the images can be related to the other via the postcondition. Rule ImageSelf ensures part of

the intuition we started from: the image should capture all possibly returned values, it should therefore

itself be a valid postcondition when self-relating. As illustrated in Section 6.1.2.3, the ImageBind rule should

not be an axiom.

Finally come the two proof rules enriching our relational logic. They directly mirror the ones used in

the ITree standard library, but generalized to work over arbitrary monads: the Ret rule describes how to

relate pure computation; the Bind rule how to relate two sequences. We have mentioned at the beginning

of this Section that the Bind rule puts all the stress of constraining the image of the computations being

related on the choice of 𝑅𝐴. Using the ImageSelf and RelComp rules, we can now prove abstractly the

following principle, systematically enriching 𝑅𝐴 by intersecting it with both images.

𝑚𝑎1 ≈𝑅𝐴 𝑚𝑎2 ∀𝑎1, 𝑎2, 𝑎1 ∈𝑚𝑎1 → 𝑎2 ∈𝑚𝑎2 → 𝑅𝐴 𝑎1 𝑎2 → 𝑘1 𝑎1 ≈𝑅𝐵
𝑘2 𝑎2

𝑥 ←𝑚𝑎1 ; ; 𝑘1 𝑥 ≈𝑅𝐵
𝑥 ←𝑚𝑎2 ; ; 𝑘2 𝑥

CloBindGen

We illustrate the adequacy of this axiomatization by providing instances.
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ret 𝑎1 ≈𝑅𝐴 ret 𝑎2
𝑅𝐴 𝑎1 𝑎2

RetInv
fmap f𝑚𝑎 ≈𝑅 fmap g𝑚𝑏
𝑚𝑎 ≈𝜆𝑎𝑏, 𝑅 (𝑓 𝑎) (𝑔 𝑏 ) 𝑚𝑏.

FmapInv
𝑏 ∈ 𝑥 ←𝑚𝑎 ; ; 𝑘 𝑥
∃𝑎, 𝑎 ∈𝑚𝑎 ∧ 𝑏 ∈ 𝑘 𝑎 BindImageInv

Figure 6.3: EqmRMonadInverses Laws

Lemma 8. The itree, stateM𝑆 , errorM𝐸 and prop monads satisfy the eqmR laws.

Furthermore, we capture the fact that the sequencing operation over ITrees depends exclusively on the

computed value:

Lemma 9. The itree monad additionally satisfies the ImageBind rule.

6.1.3.1 Inversion Laws

Figure 6.2 provides the core forward reasoning rules associated to eqmR, useful for establishing such

relations. Reciprocally, backward reasoning is useful to derive information from an established relation

between two computations. We capture in Figure 6.3 the inversion laws that hold true for all our structures

of interest.

The two first rules derive information from an hypothesis that two computations of a certain shape

are related. The RetInv rule ensures that related pure values are in the postcondition while the FmapInv

rule expresses that when fmap computations are related, the mapped functions can be pushed down the

postcondition.

Interestingly, while we have seen that forward compatibility of the image with bind is invalid in monads

as common as stateM𝑆 , backward compatibility is always valid. If we know that a value is in the image

of a bind, BindInv decomposes this hypothesis by exhibiting a branch of the continuation whose image

contains this same value. And indeed, we show:

Lemma 10. The itree, stateM𝑆 , errorM𝐸 and prop monads satisfy the eqmR inversion laws.

Furthermore, in any monad satisfying both eqmR interfaces, the image of a pure computation is exactly

the singleton:

Lemma 11. Over any eqmR monad satisfying all well-formedness laws, 𝑎 ∈ ret 𝑏 ↔ 𝑎 = 𝑏.
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We have carefully defined the semantic definition of eqmR as the smallest PER at which a computation

self relates, as opposed to an arbitrary relation. This subtlety has been motivated by the case of the prop

monad: over this instance, one can self relate at a relation whose diagonal does not contain the image. We

show that this restriction can be dropped for the three other example considered:

Lemma 12. Over the itree, stateM𝑆 and errorM𝐸 monads, the diagonal of any self-relating postcondition

contains the image:
𝑚𝑎 ≈𝑅 𝑚𝑎 𝑎 ∈𝑚𝑎

𝑅 𝑎 𝑎
BindImageInv

We have not considered any backward reasoning principle for related bind computations. Indeed, no

such rule hold in general, but the notion of image allows us to provide one in specific cases:

Lemma 13. Over the itree monad, the following rule, inverting relations between binds sharing a

common prefix, holds true:
𝑡 »= 𝑘1 ≈𝑅 𝑡 »= 𝑘2 𝑟 ∈ 𝑡

𝑘1 𝑟 ≈𝑅 𝑘2 𝑟
BindInv

Such an inversion principle is in particular crucial when assuming an invariant of a computation

expressed using the diagonal of eqmR.

6.1.4 Transporting eqmR via Monad Transformers

We have specified a minimal equational theory that any target domain for a monadic interpreter must

satisfy, and illustrated that it holds on specific monads. These domains are, however, typically built by

stacking successive monad transformers atop of a base triggerable monad—ITrees typically—as echoed by

the structure of Vellvm’s stack on Figure 5.1. In the absence of a clean abstract interface as the one we

contribute here, users had no choice but to manually re-establish such a theory for each structure they

consider. To alleviate this painful work, we provide the tools to systematically transport the eqmR structure

and its theory via appropriate monad transformers. We spell out all the requirement through an additional

series of typeclasses.

On the operational side first, a monad transformer 𝑀𝑇 : (Type → Type) → Type → Type must

provide the traditional lift function embedding computations of an arbitrary monad into the transformed
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𝑅 𝑎 𝑏

lift (ret 𝑎) ≈𝑅 ret 𝑏 LiftRet
𝑚𝑎 ≈𝑅𝐴 𝑚𝑎′ ∀𝑎 𝑎′, 𝑅𝐴 𝑎 𝑎′ → 𝑘 𝑎 ≈𝑅𝐵 𝑘 ′ 𝑎′

lift (𝑥 ←𝑚𝑎; ;𝑘 𝑥) ≈𝑅𝐵 𝑥 ← lift𝑚𝑎′; ; lift (𝑘 ′ 𝑥) LiftBind

𝑚𝑎 ≈𝑅 𝑚𝑏
lift𝑚𝑎 ≈𝑅 lift𝑚𝑏

LiftEqmR

Figure 6.4: Monad morphism laws

EqmROK 𝑀
EqmROK (lift 𝑀) OK

EqmRMonad 𝑀
EqmRMonad (lift 𝑀) OKMon

EqmRMonadInverses 𝑀
EqmRMonadInverses (lift 𝑀) OKInv

Figure 6.5: Monad transformer well-formedness conditions

structures:

lift : ∀(𝑀 : Type→ Type) (𝐴 : Type), 𝑀 𝐴→ 𝑀𝑇 𝑀 𝐴

For any monad𝑀 , lift𝑀 must define a monad morphism, i.e., an indexed function commuting with

the ret 𝑎nd bind operations. While standard, these two laws, depicted on the upper part of Figure 6.422,

must be stated with respect to eqmR in our setup. Furthermore, lift must itself respect eqmR, which we

capture in the LiftEqmR rule. Monad transformers must additionally construct valid monads: lifted monads

should satisfy the monad laws. Since we request a richer minimal equational theory of our monads, we

spell out their preservation (Figure 6.5): the well-formedness of eqmR, its forward rules and its backward

rules should all be preserved.

Example 5. stateT . The state monad can be generalized into an appropriate transformer stateT𝑆 𝑀 𝐴 ≜

𝑆 → 𝑀 (𝑆 × 𝐴). The return and bind definitions are standard, mirroring the ones from stateM𝑆 , but

leveraging the underlying monadic operations: 𝑟𝑒𝑡 𝑣 ≜ 𝜆 𝑠 ⇒ ret (𝑣, 𝑠) and 𝑏𝑖𝑛𝑑 𝑐 𝑘 ≜ 𝜆 𝑠 ⇒

(𝑣, 𝑠) ← 𝑐 𝑠 ;; 𝑘 𝑣 𝑠 . The lift operator relies on the underlying fmap to reinject the unchanged state:

lift 𝑐 ≜ 𝜆 𝑠 ⇒ fmap (𝜆 𝑥 ⇒ (𝑠, 𝑥)) 𝑐 .

We parameterize the definition of eqmR at any monad transformed by the state transform by a relation

on states 𝑅𝑠𝑡 . The relation on computations is then obtained by lifting pointwise 𝑅𝑠𝑡 and a relation on values

through the underlying eqmR— it is reminiscent of Goubault-Larrecq’s characterization [GLN08] of the
22We omit the implicit argument𝑀 in this Figure, writing lift in lieu of lift𝑀 .
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state transformer logical relation, and Maillard’s relational Dijkstra monads [MHRVM20]:

𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ ∀𝑠1 𝑠2, (𝑠1, 𝑠2) ∈ 𝑅𝑆𝑡 →𝑚𝑎 𝑠1 ≈𝑅𝑠𝑡⊗𝑅 𝑚𝑏 𝑠2

where 𝑅⊗𝑅′ is defined as 𝜆 𝑥 𝑦 ⇒ 𝑅 𝑥 𝑦∧𝑅′ 𝑥 𝑦. Assuming related input states, eqmR unfolds the definition

of the state monad to see it explicitly as a computation in the underlying monad over the product type, and

enforces both the state relation on output state and the relation on values by taking as a postcondition the

product of both relations.

The image admits a similar characterisation as in the case of stateM𝑆 , but expressed in terms of the

underlying notion of image:

Lemma 14. 𝑎 ∈𝑚𝑎 ⇐⇒ ∃ 𝑠 𝑠′, (𝑚𝑎 𝑠) ∈ (𝑠′, 𝑎)

We prove that stateT𝑆 transports all interfaces, providing our equational theory for free for structures

such as the ones introduced in the first three layers of Figure 5.1 or in both languages of the compiler

described in the original ITree paper [XZH+20].

Example 6. errorT . Similarly, we support the standard generalization of errorM to a monad transformer:

errorT𝐸 𝑀 𝐴 ≜ 𝑀 (𝐸 + 𝐴) . The return and bind operators, omitted here, are standard. The lift simply

injects the result of the underlying computation into a successful one: lift ≜ 𝜆 𝑚𝑎 ⇒ fmap inr𝑚𝑎. Finally,

eqmR is parameterized by an arbitrary relation over errors and feeds the coproduct of both relations to the

underlying eqmR:𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ 𝑚𝑎 ≈𝑅𝑒𝑥𝑛⊕𝑅 𝑚𝑏.

We prove that errorT𝐸 preserves all interfaces. The characterization of the image still holds: they are

the successful elements of the underlying image.

Lemma 15. 𝑎 ∈𝑚𝑎 ⇐⇒ (inr 𝑎 ∈𝑚𝑎)

6.1.5 Relating Computations across Distinct Monads

For clarity of exposition, we have presented eqmR as a heterogeneous relation over the return type, but

assuming the same monad on each side, which is the most direct analog to the ITree library’s notion of eutt.

However, in many situations—e.g., when expressing the correctness of a pass of compilation, such as for the

imp-to-asm compiler (see Section 7)—we need to work across languages and relate computations in distinct
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interp ℎ (ret 𝑥) ≈ ret 𝑥
InterpRet

interp ℎ (𝑥 ← 𝑡 ; ; 𝑘 𝑥) ≈ 𝑥 ← interp ℎ 𝑡 ; ; interp ℎ (𝑘 𝑥) InterpBind

interp ℎ𝐸 (trigger 𝑒𝐸 ) ≈ lift (ℎ𝐸 𝑒𝐸 )
InterpTrigger

∀ 𝑗, interp ℎ (𝑓 𝑗) ≈ 𝑓 ′ 𝑗
interp ℎ (iter 𝑓 𝑖) ≈ iter 𝑓 ′ 𝑖

InterpIter

𝐹 +?𝐺-<𝐻 𝐸 +?𝐻 -<𝐼
interp𝐼 (over ℎ𝐸 ) (trigger 𝑒𝐹 ) ≈ lift (trigger 𝑒𝐹 )

IgnoreTrigger

Figure 6.6: Interpretation Laws (we write ℎ𝐸 for a handler of type 𝐸 { 𝑀 and 𝑒𝐸 for an event of 𝐸)

monads. We therefore also provide in our formal development a more general notion of family of relations,

heqmR, parameterized by two monads𝑀 and 𝑁 , and lifting relations at return types (A → B → Prop) to

relations at computation-level across monads (M A → N B → Prop). Such relations are typically specific

to the proof at hand: each monad still comes with its own eqmR that the cross-monad relation must be

proved to respect.

6.2 Layering EqmR with Interpreters

In the previous section, we have discussed how to build equational theories for monads and monad

transformers, where we exposed several semantic characterizations such as element inclusion (using image)

and equational laws that certain monads satisfy.

How does this relate to building layered interpreters? The monadic equational framework is the basis for

expressing structural properties for interpretation. When we layer the interp combinator (from Section 5.2),

we will also like certain structural properties to hold at each layer of interpretation. For instance, interp

should respect monadic operators such as ret and bind, and interact well with iteration. Now, given an

interpretable monad (see Section 5.2.4), equipped with an appropriate instance of eqmR, we can state what

laws the trigger, over, and interp functions should obey. These laws are structural properties for the

Interp typeclass and are shown in Figure 6.6.

The InterpRet and InterpBind laws say that interp h is a monad homomorphism.

The InterpTrigger rule applies when the event being triggered belongs to the signature handled by

the handler—it simply says that the interpretation (morally) is the result of the handler applied to the event.

The lift on the right-hand-side is the one from the functor associated with the interpretable monad, and it
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coerces the handler’s output to the right form (see the type of interp in Section 5.2.4, and the definition of

lift in Section 6.1.4). Note that the handler might itself contain over, which means that this rule can still

apply for a function that injects a handler for a program with a larger signature.

IgnoreTrigger covers the case when the handler cannot act on the triggered event. For example, for

interp handle_mem (trigger Print), where handle_mem is a handler for memory operations, and Print

is the event for I/O. Print cannot be handled by handle_mem, and thus is propagated by re-triggering the

event in the target monad, in this case, as lift (trigger Print).

The last rule, InterpIter formalizes the interaction between iteration and interpretation. It says that if

the interpreter respects the loop body for every iteration 𝑗 , then it commutes with iter. This provides a

kind of lock-step simulation principle that is useful in practice when reasoning about the equivalence of

two computations defined by iteration.

6.2.1 Higher Order Functors Lift Structural Properties : Interp Laws for any Stack

The key contribution in our framework is that these interpretation laws about monads need to be proven

only once and for all, regardless of the stack of interpretation. Specifically, we have proved that the

laws in Figure 6.6, which are specified via a typeclass in Coq, hold for ITrees as a base instance, with its

standard definitions of interp, iter, etc.. To account for layered interpretations, we then define a set of

well-formedness conditions on the monads and monad transformers, which let us derive further instances

of the interpretation laws by applying monad transformers.

Recall the definition of stacking interpretation from Section 5.2.4—it derives instances of Interp.
Instance stack_interp {T IM : (Type → Type) → Type → Type} {M : Type → Type}

{HFunctor T} {IterativeMonad M} {Interp IM Id M} : Interp IM T M :=
fun E h R t ⇒ hfmap (interp h) t.

One constraint imposed by this definition is that M is an IterativeMonad, a property that must be

lifted to T M for a correct interpretation to exist. The other key well-formedness conditions express the

functorial properties of the higher-order functor, hfmap, used in this definition. Such structural properties

of higher-order functors, and their use in nesting monadic types, is known in the literature (see [JG09]);

and we adapt those definitions for use in our setting. Select higher-order functor laws are presented

in Figure 6.7, which shows that hfmap transports identity, commutes with composition, and preserves
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hfmap (𝜆𝑥 ⇒ 𝑥)𝑡 ≈ 𝑡 HfmapId
hfmap (𝑓1 ≫ 𝑓2) 𝑡 ≈ (hfmap 𝑓1 ≫ hfmap 𝑓2) 𝑡

HfmapComp

MonadMorphism𝑓
MonadMorphism(hfmap𝑓 ) HfmapNat

Figure 6.7: Select HFunctor Laws

MonadT 𝑆 MonadT 𝑇
MonadT (𝑆 ≫ 𝑇 ) ComposeMonadT

IterativeMonadT 𝑆
IterativeMonadT 𝑇

IterativeMonadT (𝑆 ≫ 𝑇 ) ComposeIterativeMonadT

HFunctor 𝑆 HFunctor 𝑇
HFunctor (𝑆 ≫ 𝑇 ) ComposeHFunctor

IterativeMonadTLaws 𝑆
IterativeMonadTLaws 𝑇

IterativeMonadTLaws (𝑆 ≫ 𝑇 ) ComposeIterativeMonadTLaws

HFunctorLaws 𝑆
HFunctorLaws 𝑇

HFunctorLaws (𝑆 ≫ 𝑇 ) ComposeHFunctorLaws

Figure 6.8: Composable Structures and Laws

monad morphisms. These are unsurprising properties for higher-order functors, but they are useful in

our setting when lifting ret, bind, iter, and lift combinators. The remaining requirements follow from

general facts about compositionality: the function composition of monad transformers, iterative monad

transformers, and higher-order functors preserve the operations and well-formedness properties, as shown

in Figure 6.8, where≫ is function composition. The structural properties MonadT, IterativeMonadT, and

so on, correspond to the typeclasses that capture the structures and well-formedness laws. The complete

set of hfmap-related laws and the details of these typeclasses is included in the Coq development.

Although there is a fair amount of effort needed to instantiate these well-formedness requirements for

a given monad transformer, that work needs to be done only once, after which we can build interpretable

monads by applying the transformer. We have shown that the interpretation laws, iterative monad laws,

and higher-order functor laws hold for the identity monad transformer, state monad transformer, and error

monad transformer. These form a useful basis for building language semantics; we expect that additional

monad transformers could also be verified to satisfy these requirements, but leave that to future work.
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Chapter 7

EqmR in Practice : Implementation and Case Study

This section surveys our Coq formalization, briefly describing the typeclasses necessary for packaging the

equational theory the custom tactics necessary for implicit type resolution, and a case study of an imp to

asm compiler to see how eqmR can be used in practice.

7.1 Typeclasses for EQM and Interp Laws

HFunctor	Laws
IterativeMonadT	Laws

IterativeMonad	Laws

MonadMorphism

EqmR	Laws

Monad

HFunctor
IterativeMonadT

MonadIter

Iterative

Kleisli	Equivalence

MonadT

MonadT	Laws

EqmR

IterativeMonad

InterpLaws

Interp

Over

Subevent Trigger

Interaction	Trees	library

Standard	

EqmR	framework	

Figure 7.1: Typeclass dependencies in the EqmR frame-
work

Figure 7.1 summarizes the collection of type-

classes supported by our interpretation frame-

work. The red nodes are the category theory-

relevant typeclasses from the Interaction Trees

library (most notably the theory of iterative

monads and equivalence on Kleisli arrows), the

yellow nodes are standard functional program-

ming typeclasses (functor, monad, monad trans-

formers, higher-order functors), and the green

nodes represent the structural properties that

we have formalized in this framework. A dotted line connects an “operational” typeclass to its corresponding

laws, and solid arrows represent dependencies.

Custom Tactics for Extending Coq Typeclass Inference Without explicit support, the Coq typeclass

inference algorithm often fails to infer the implicit arguments for interp, over, and trigger when using

the interp laws. We solve this issue by providing custom tactics for each of the relevant lemmas for our

interp laws: these are dubbed i-tactics for “interp law tactics”. For each of the interp laws, there is a

corresponding i-tactic, and we also have a specialized setoid-rewriting tactic irewrite for inferring the

necessary setoid rewriting we need for the laws.

This is necessary because (1) there are multiple overlapping instances of equational laws (for instance,
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both the strong and weak bisimulation in the ITree library satisfy eqmR rules), (2) the decomposition of

stack of monad transformers is not unique (for instance, the identity monad transformer fun x ⇒ x is a

trivial instance of a monad transformer), and (3) the type annotation for the sums of events of the over

combinator in the IgnoreTrigger law (recall Figure 6.6) presents a difficult typeclass-resolution problem,

and we would like the users to not use so many explicit type annotations while using these laws. We have

developed a small custom tactic library for inferring the typeclass instances. Here we sketch (a simplified

version of) the implementation of ibind, which corresponds to the application of the InterpBind law.

Ltac ibind_body TR h t k :=
match type of h with
| ∀ T : Type, ?E T → _ T ⇒

let Hbind := fresh "Hbind" in
pose proof
(interp_bind (T := TR) (E := E)

h k t) as Hbind;
try (irewrite Hbind)

end.

Ltac ibind_rec TR h x :=
match x with
| interp (T := ?TR) ?h ?x_

⇒
ibind_rec TR h x_

| bind ?t ?k ⇒
ibind_body TR h t k

end.

Ltac ibind :=
match goal with
| ⊢ eqmR _

(interp (T := ?TR) ?h ?x)
_ ⇒
ibind_rec TR h x

end.

Figure 7.2: Custom tactics for using the InterpBind rule

The custom tactics for using the InterpBind rule are shown in Figure 7.2. The base case is ibind_body,

which instantiates the InterpBind law with explicit type arguments for the monad transformer TR, triggered

event type E, handler h, continuation k and prefix t of the bind operator. In ibind_body, we must explicitly

match the type of the handler, h, because, given a program interp h (interp h' (x � ma ;; k x)), the

typeclass inference in Coq cannot determine whether it should attempt to apply the commutation lemma

to the inner or the outer interp function. The irewrite tactic infers the specific setoid instance needed

in order to perform the rewriting. The ibind_rec recursively matches against the argument of interp

to specify the innermost monad in the interp function, and the top-level tactic ibind, simply calls into

ibind_rec to start the process.

7.2 Case Study : imp to asm Compiler

We have re-verified the correctness of a simple imperative language (imp) to a simple assembly language

(asm) compiler, the case study presented in the original Interaction Trees paper [XZH+20], in this equational

framework to illustrate how the equational laws are lifted in the stack of interpretation. In the following

subsection we discuss the benefits to using the framework that we have observed.
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7.2.1 Elegant Staged Interpretations : the asm Example

Recall from Section 5.2.3 how the automatic injection of handlers eliminates the need for extra manual

annotations. The benefit for our layered interpretation is larger when it comes to larger stacks of interpre-

tations as presented in 5.1, but we present here a simplified version for expository purposes. We illustrate

this point again in asm, and illustrate another benefit: writing layered interpreters is more straightforward.

The ASM language has two event signatures: Reg, for registers, and Memory, for the heap, and has two

handlers respectively, h_reg and h_memory. Let’s look at the original definition of interp_asm, which uses

bimap in order to manually inject the handlers for each of the events.
(* [interp_asm] definition without [over] and [interp] *)
Definition interp_asm {E A} (t : itree (Reg +' Memory +' E) A) :=
let h := bimap h_reg (bimap h_memory (id_ _)) in
let t' := interp h t in fun mem regs ⇒ interp_map (interp_map t' regs) mem.

The bimap h_reg (bimap h_memory (id_ _)) manually injects the handlers for Reg and Memory for the

signature of the program itree (Reg +' Memory +' E) A. The application of interp_map and interp does

not accurately reflect the intuition that we are staging interpretation: in fact, the interpreters are being

applied simultaneously. In addition, the event signature is very concrete, in the sense that the signature

must provide the ordering of Reg +' Memory +' E for this interp_asm to apply.

The code below is the staged interpretation using over and the new interp combinators.
Definition interp_asm {D E F A} {̀Reg +? D -< E} {̀Memory +? E -< F} (t : itree F A) :=
(interp (T := stateT memory) (over handle_reg) (interp (T := fun x ⇒ x) (over handle_mem) t)).

Observe the benefits in writing the interpretation in this manner: now, each stage of interpreting

Reg and Memory are clearly distinct, and are compositional. The over annotation also eliminates the need

for manual annotation. It is also extensible in the sense that adding another stage of interpretation is

straightforward—the event signature is not rigid.

7.2.2 Structural Rules for Free

In the original imp-to-asm proof of correctness, one had to show that structural properties hold for each layer

of interpretation. For instance, if one wanted to use the InterpRet law with layers stateT reg (stateT

memory (itree E)), an instance would need to be proven for each of itree E, stateT memory (itree E),
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and stateT reg (stateT memory (itree E)) (or, less compositionally, one single, ad hoc instance that

essentially combines all three proofs into one). This does not scale, especially when given a large stack

interpreters with many laws. However, now we get these properties for free.

This illustrates how definitions can be simplified. What about proofs? Consider the following structural

lemma stating how the interpretation function for asm commutes with bind.
Lemma interp_asm_bind: ∀{R S} (t: itree E R) (k: R → itree E S),

interp_asm (bind t k) ≈ (x � interp_asm t ;; interp_asm (k x)).

OLD PROOF:
intros.
unfold interp_asm, interp_map.

cbn.
repeat rewrite interp_bind.
repeat rewrite interp_state_bind.
repeat rewrite bind_bind.
eapply eutt_clo_bind; [

reflexivity | ..].
intros. rewrite H.
destruct u2 as [g' [l' x]].
reflexivity.

NEW PROOF:
intros; unfold interp_asm.
do 2 ibind.

Now compare the old proof to the new proof, as shown to

the right. The old proof of the lemma had to refer explicitly to

the bind commutation property at each layer (interp_bind and

interp_state_bind), which are specific to the layers and cannot be

composed with each other. In addition, it used the eutt_clo_bind

lemma to perform rewriting under the monadic bind, while the

intuitive reasoning principle should be “commute the bind operator

under interp twice”.

The new proof only has to apply the same bind commutation

lemma using the ibind tactic, which essentially unfolds to invoking

‘irewrite interp_bind‘ twice, while inferring the correct setoid instances for rewriting the InterpBind rule.

At each layer of interpretation, we have the same bind commutation property that holds, and we do not

need to conjecture the structural property to hold or reprove it for each combination of layers.

7.2.3 Commuting Layers of Interpretation

To determine that we indeed have flexibly composable structural rules, we can modify the structure of

an existing development and see how hard it is to “port” the proofs to the new structure. To that end,

we modified the existing imp to asm compiler development by swapping the order in which registers and

memory events are interpreted. Of course such a change necessitates certain modifications: for instance, we

had to re-order the arguments to the relation connecting the imp and asm state monads. However, beyond

those simple changes, most of the proofs go through with minimal differences—the most complicated
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change being instances where the IgnoreTrigger rule applies at a different position in the stack.23 The old

proofs (like the one shown above) would be far less resilient to such changes, and therefore much more

difficult to maintain than the new ones enabled by this framework.

7.3 Related Work

Monads, Monad Transformers, and Modular Interpreters. The approach of building modular interpreters from

monads and monad transformers derives from an expansive literature. Moggi’s seminal paper [Mog89a,

Mog91] about using monads to characterize imperative features in a pure, functional setting was conse-

quently popularized by Wadler [Wad90] and Peyton Jones [PJW93]. Monad transformers [Mog90] were

then adopted as a way of composing various effects: notably Liang, et al. [LHJ95] showed how to build

modular interpreters in that style, which we have adopted and formalized here. Swierstra [Swi08], Apfel-

mus [Apf10], Kiselyov, et al. [KSS13], and Kiselyov and Ishii [KI15] have showed how to use the free

and freer monads to define modular monad instances. A related data structure to freer monads are Tlön

Embeddings [LW22], which use program adverbs as a basis to allow more flexibility in computational

modeling of effects. Interaction Trees [XZH+20] are a coinductive freer monad, and provide an instance

where each interpretation layer forms an iterative monad. In our framework, we maintain that the range of

interpretation is a stack of iterative monads and show how, in this practical setting, the laws for iteration

can be composed and lifted through monadic interpreters.

Nesting interpreters are also a prominent feature of Johann and Ghani’s work [JG09]. That work

introduces two separate constructs for building layered monads: a base interpreter and a second interpreter

for nesting. Our general interp definition subsumes both definitions, but uses a distinct base instance. Our

eqmR framework shows how to build a formalized equational theory that works nicely with the lifting and

plays well with Coq-style typeclasses, and so can be seen as a mechanized version of their results.

Algebraic Effects and Handlers. Interaction trees and languages with support for algebraic effects [PP03b,

PP13, HPP06, PP09, BP14] share similar goals, namely flexible, programmable construction of semantics.

As such, our work has taken inspiration from that literature. There are significant differences, however.

Programming languages that implement algebraic effects, like Eff [BP15], are working in an ambient
23The supplementary Coq material contains the proofs.
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environment that allows nontermination, whereas ITrees are crafted to fit with the total semantics of Coq.

The handlers for algebraic effects are more general than those possible with ITrees. In particular, the ITree

handlers do not have access to the continuation of the event, which makes them less expressive (giving

the handler access to the continuation would be hard to realize in Coq because its termination checker

would not be able to observe that manipulations of the continuation are sufficiently guarded to define valid

cofixpoints).

The algebraic reasoning of algebraic effects is often used in that setting to characterize equations that

hold for particular effects; for instance, for state effects the sequence put s; put t is equivalent to put t

(since the second put overwrites the first). Such equivalences can be proven as theorems about particular

monads used for interpreting events. In our context, such a theorem would justify a rewriting rule with

respect to the state monad notion of eqmR. This thesis, however, focuses not on such monad-specific

properties. Instead, we are looking at how to automatically construct the generic, structure-preserving,

parts of equational theories compositionally.

Relational Logics. Benton’s Relational Hoare Logic [Ben04] and Nanevski, et al.’s Relational Hoare

Type Theory [NBG13] have been shown to be useful for reasoning about program transformations and

properties such as information flow. The subsequent work on predicate transformers [SB19], Dijkstra

Monads [AHM+17, MAA+19, MHRVM20], and F* [SHK+16] give a general framework for building program

logics for arbitrary monadic effects. The Dijkstra Monad setting is especially relevant to our approach and

is similar in that it builds a general logic for reasoning about monads, but is different in that it does not

focus on composing reasoning about effects (i.e., building a compositional theory using interpretation).

Logical Relations and Bisimulations for Monadic Types. There are many techniques for relational reason-

ing, including binary logical relations [DAB09, BKBH09, Ahm04] and bisimulations [LGL17, KW06, San12],

and their combination [HDNV12, HRRS20]. The eqmR framework defines relations for monads that techni-

cally form logical relations. Logical relations over monadic types were developed by Goubault-Larrecq,

et al. [GLN08], giving a sound basis for a monadic equivalence akin to a notion of bisimilarity. As in our

approach, these techniques build an expressive basis for program logics and program verification [JSS+15].

PER Models. The notion of image is inspired from PER models of computation, as used in, e.g., models of

the lambda calculus with recursion and recursive types [Mit96, Chapter 5], for reasoning about operational
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equivalences [AM01], or for giving different views of information [ABHR99]. In our setting, we use a PER

model to gain set-theoretic reasoning about elements in a monadic types, as a way to refine our reasoning

principles.

7.4 Discussion and Conclusion

We have presented a novel and principled approach to the construction of monadic interpreters built in

layers from a free(r) monad structure such as ITrees. The tools we have introduced and formalized in Coq

greatly reduce the boilerplate and glue code needed to construct such interpreters, and also provide for free

the backbone of the equational theory necessary for any relational reasoning over the resulting structure.

Our current implementation provides instances for the structures most commonly used in existing ITree

projects, lifting the equational theory through state and error transformers. However, there is a zoo of

monads: expanding the library to cover additional effects and monads would be a valuable extension.

Among those effects, nondeterminism is particularly worthy of attention. Indeed, we have presented

in Section 6.1 the prop monad, but looking back at Figure 5.1, the Vellvm developers use a more general

structure that models not just nondeterministic sets of values, but rather sets of computations. This approach

relies on a hypothetical prop transformer, propT𝑀 𝐴 ≜ 𝑀 𝐴→ Prop. For Vellvm, the authors have fixed

𝑀 to be itree E, defining a new ad hoc structure rather than a transformer. Interestingly, the reason for this

was because they lacked a generic notion of image for a monadic computation, which we introduced through

this dissertation. Indeed, they define the bind over this structure as: bind 𝑃 𝐾 𝑡𝑏 ≜ ∃ 𝑡𝑎, 𝑘, 𝑃 𝑡𝑎 ∧ 𝑡𝑏 ≈

bind 𝑡𝑎 𝑘 ∧ (∀ 𝑎, Leaves 𝑎 𝑡𝑎 → 𝐾 𝑎 (𝑘 𝑎)). This should be read as judging whether an ITree 𝑡𝑏 belongs to

the bind: there should be a computation 𝑡𝑎 in the prefix 𝑃 and a continuation 𝑘 such that at any leaf of 𝑡𝑎 (i.e.,

in the image of 𝑡𝑎 to use our terminology), the continuation belongs to the nondeterministic set. Without

the restriction to the image, this construction is completely ill-behaved. The reason we don’t include propT

here is that, even using the image, propT𝑀 doesn’t lift the monad laws properly—this definition of bind

does not associate to the left (an expected artifact of the nondeterminism [MHRVM20]). Thus, developing

clean nondeterministic transformers for monadic interpreters remains an interesting prospect.

With these extensions to the ITree library in place, we lighten the bureaucratic boilerplate of structural

rules when programming and reasoning about nested monadic interpreters. Of course, monadic reasoning

85



can be about more than its structural rules: the extensions in this dissertation express nothing about

monad-specific algebras. This aspect of the reasoning is still fairly ad hoc in the ITree landscape; combining

our contribution with other techniques, such as Dijkstra monads [MAA+19, MHRVM20], would likely

further improve the viability of relational reasoning for monadic interpreters at scale.

86



Part III

A Separation Logic Framework
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Chapter 8

Introduction to Separation Logic

LLVM IR transformations involve modifying code that contains stateful and effectful operations. However,

in the previous chapters, there were no strong reasoning principles for stateful transformations. Its proofs

of optimizations only reasoned about control flow and did not involve stateful computation. For larger

pieces of code, proofs of optimizations become quickly excruciating without a method to support localized

reasoning about state. Without a modular program logic, it is difficult to prove complex transformations

correct. As a solution, we propose a relational separation logic framework for VIR, which provide useful

abstractions for reasoning about LLVM IR transformations.

In this chapter, we will first define the basics of Hoare logic, explain the Hoare logic already present

in VIR, and then introduce the concepts of separation logic and ghost resources. In fact, one can view

the relational reasoning principles from Section 4.2.1 as relational Hoare triples for monadic programs.

Chapter 9 will introduce the fundamentals for Velliris, our relational separation logic framework VIR, and

the remainder of this dissertation will discuss the theory and model of this framework.

8.1 A Hoare logic for Interaction Trees

Hoare logic is an axiomatic semantics: it is a program logic that assigns meanings to programs. A set of rules

are used to reason about programs, where the behavior of a program is described through the relationship

between the properties of its input and output. A unary Hoare triple over a program 𝑒 can be written as

{𝑃}𝑒{𝑄}, which means that if 𝑃 holds before the execution of 𝑒 , and if 𝑒 terminates, then 𝑄 holds after the

execution of 𝑒 . Note that Hoare triples state a partial correctness assertion over a program, where it checks

that a program satisfies the postcondition when it terminates, but does not provide any guarantees about

the termination of the program.

Relational Hoare logic (RHL) is a program logic for relating two programs. The relation between two

programs may be about program equivalence or refinement, which is useful in compilation or showing

similarity between two versions of the same program. Given a relation ⪯ that relates two programs 𝑒𝑡 and
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𝑃 ⇒ 𝑄 (𝑟1, 𝑟2)
{𝑃} ret 𝑟1 ≈ ret 𝑟2 {(𝑣1, 𝑣2), 𝑄 (𝑣1, 𝑣2)}

HRet

{𝑃1} 𝑡1 ≈ 𝑡2 {(𝑣1, 𝑣2), 𝑅1 (𝑣1, 𝑣2)}
{𝑃2} 𝑡1 ≈ 𝑡2 {(𝑣1, 𝑣2), 𝑅2 (𝑣1, 𝑣2)}

{𝑃1 ◦ 𝑃2} 𝑡1 ≈ 𝑡2 {(𝑣1, 𝑣2), 𝑅1 ◦ 𝑅2(𝑣1, 𝑣2)}
HTrans

{𝑃}𝑡1 ≈ 𝑡2 {(𝑣1, 𝑣2), 𝑈 (𝑣1, 𝑣2)}
∀𝑢1 𝑢2, {𝑈 (𝑢1, 𝑢2)} 𝑘1 𝑢1 ≈ 𝑘2 𝑢2 {(𝑣1, 𝑣2), 𝑅 (𝑣1, 𝑣2)}
{𝑃}𝑥 ← 𝑡1; ; (𝑘1 𝑥) ≈ 𝑥 ← 𝑡2; ; (𝑘2 𝑥){(𝑣1, 𝑣2), 𝑅 (𝑣1, 𝑣2)}

HCloBind

{𝑃1} 𝑡1 ≈ 𝑡2{(𝑣1, 𝑣2), 𝑅1 (𝑟1, 𝑟2)}
𝑃2 ⊆ 𝑃1 𝑅1 ⊆ 𝑅2

{𝑃2} 𝑡1 ≈ 𝑡2 {(𝑣1, 𝑣2), 𝑅2 (𝑟1, 𝑟2)}
HMon

{𝑃} 𝑡1 ≈ 𝑡2{(𝑣1, 𝑣2), 𝑅 (𝑟1, 𝑟2)}
{𝑃}interp ℎ 𝑡1 ≈ interp ℎ 𝑡2 {(𝑣1, 𝑣2), 𝑅 (𝑟1, 𝑟2)}

HInterp

Figure 8.1: Relational reasoning principles over ITrees, Floyd-Hoare style

𝑒𝑠 , {𝑃}𝑒𝑡 ⪯ 𝑒𝑠 {𝑄} states a relational pre- and post-condition 𝑃 and 𝑄 over the two programs.

An important liveness property for RHL is termination. In showing that two programs are similar, it is

useful to show termination-preserving refinements between two related programs. A refinement 𝑒𝑡 ⪯ 𝑒𝑠

that does not preserve termination states that if a target program 𝑒𝑡 terminates, then the source program 𝑒𝑠

terminates. A termination-preserving refinement 𝑒𝑡 ⪯ 𝑒𝑠 states that (1) if a target program 𝑒𝑡 terminates,

then the source program 𝑒𝑠 terminates and (2) if an execution of a target program 𝑒𝑡 diverges, then there

exists an execution of the source program 𝑒𝑠 that diverges.

Now, we can observe that the bisimulation between ITrees we have seen in previous chapters can

form a termination-preserving relational Hoare triple. 𝑒𝑡 ≈𝑅 𝑒𝑠 can be seen as the relational Hoare triple

{⊤}𝑒𝑡 ≈ 𝑒𝑠 {(𝑣𝑡 , 𝑣𝑠), 𝑅 𝑣𝑡 𝑣𝑠 }. Intuitively, 𝑒𝑡 ≈𝑅 𝑒𝑠 means that two possibly diverging programs 𝑒𝑡 and 𝑒𝑠

either (1) both terminate and satisfy the postcondition 𝑅 over the result of the computation (where 𝑣𝑡 and 𝑣𝑠

binds the resulting values of the computation), or (2) both diverge and the programs diverge in simulation

with each other. Moreover, the relation ≈𝑅 is monotonic with respect to its parameterized relation 𝑅, so it

is useful to use this relation for proving simulation assertions between two programs.

To capture a generic relational Hoare triple over ITrees, we can easily define {𝑃}𝑒𝑡 ≈ 𝑒𝑠 {(𝑣𝑡 𝑣𝑠), 𝑄 𝑣𝑡 𝑣𝑠 }

as 𝑃 → 𝑒𝑡 ≈𝑄 𝑒𝑠 . Given this definition, it is easy to translate the relational reasoning principles from

Section 4.2.1 as Hoare triples. The definition of relational Hoare triples over ITrees is shown in Figure 8.1.

Using these rules, we can define properties about programs denoted with ITrees using Floyd-Hoare style

reasoning.
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8.2 Separation logic

Since the advent of Hoare logics, many variants have emerged to aid modular specification and verification

of programs. A successor of Hoare logic is separation logic [Rey02, ORY01], which provides a structured

logical framework for reasoning about stateful programs. It is particularly well-suited to programs that

manipulate dynamic data structures and employ resource management. It offers a means to express

and verify properties related to program state separation, ensuring that different parts of a program do

not interfere with each other, even in a shared memory environment. This characteristic of separation

logic makes it invaluable for reasoning about complex, concurrent, or dynamic programs. We begin by

introducing the foundational concepts of separation logic in the following section.

Separation logic is a resource logic based on the logic of bunched implications (BI) [OP99]. Central to

separation logic is the concept of separation, which allows the logic to distinguish between disjoint portions

of the memory. Separation Logic introduces the separating conjunction operator, denoted as "∗," to express

the idea that two sets of memory regions do not overlap, thereby enabling local reasoning about program

components. This concept of locality simplifies proofs, reduces the need for global invariants, and enhances

the modularity of verification.

Assertions We present a separation logic with the following grammar.

Propositions 𝑃,𝑄 ::= ⊤ | ⊥ | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | 𝑃 ⇔ 𝑄 | ¬𝑃

| ∃𝑥 .𝑃 | ∀𝑥 .𝑃 | 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | ℓ ↦→ 𝑣

The classical logical operators (⊤, ⊥, ∧, ∨, ⇒, ⇔, ¬, ∀, ∃) have their expected definitions. The inter-

esting part of this logic is the separation conjunction ∗ and the separating implication −∗ .

The assertion ℓ ↦→ 𝑣 , read as ℓ points to 𝑣 , states that the location ℓ in the heap stores the value 𝑣 .

The assertion 𝑃 ∗𝑄 is the separating conjunction is similar to classical conjunction (∧), in that it states the

assertion of both 𝑃 and 𝑄 . However, it also asserts that 𝑃 and 𝑄 are assertions on disjoint regions of the

heap. The proposition ℓ ↦→ 𝑣 ∗ ℓ ↦→ 𝑤 is false for any ℓ, 𝑣, , and 𝑤 . Similarly, the separating implication
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𝑃 −∗ 𝑄 (the magic wand operator) is similar to the classical implication (⇒). It states 𝑄 holds under the

assumption of ownership over the heap fragment described by assertion 𝑃 .

Proof rules The most novel proof rule in separation logic is the frame rule.

{𝑃}𝐶{𝑄}
{𝑃 ∗ 𝑅} 𝐶{𝑄 ∗ 𝑅} SLFrame

This rule means that if the program 𝐶 executes with its initial heap satisfying 𝑃 and after execution its

heap satisfies 𝑄 , then it is also safe to add a disjoint resource 𝑅. Since 𝐶 only needed to access a disjoint

region of the memory than 𝑅, it will leave 𝑅 untouched by the end of its execution.

8.3 Ghost resources

Ghost resources are auxiliary resources that are not present in the actual program execution but are used

for reasoning and verification purposes. In the context of separation logic, ghost resources play a vital role.

They allow us to attach additional information or invariants to memory locations without affecting the

program’s operational behavior.

So far, we have considered a concrete resource (heap) that is present in a program’s execution. In

general, separation logic does not need to be instantiated with a concrete resource. In fact, given a resource

algebra that can state a notion of separation over its resources, we can instantiate a separation logic over it.

Here, we define a simple resource algebra for separation logic.

8.3.1 A resource algebra: partial commutative monoid

We present a resource algebra (𝑅, (⊙), 𝜖) which is a partial commutative monoid. Intuitively, the laws state

that resources can be added, but that certain resources cannot be added together.

The infix partial binary operator (⊙) : 𝑅 × 𝑅 ⇀ 𝑅 denotes the addition of two resources. The operator

is partial because not all resources can be combined. In the case of the heap example earlier, two resources

could be combined only if they are disjoint. The operator is a commutative monoid with an identity 𝜖 so

that it can behave as an addition operator, as addition is typically associative and communitive and has an

identity element.
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𝑚 ⊙ 𝜖 =𝑚 (identity)

𝑚1 ⊙𝑚2 =𝑚2 ⊙𝑚1 (commutativity)

(𝑚1 ⊙𝑚2) ⊙𝑚3 =𝑚1 ⊙ (𝑚2 ⊙𝑚3) (associativity)

Example 7. We instantiate a resource algebra for a simple heap which is defined as a partial map from

addresses to booleans. The carrier type 𝑅 is the partial map from addresses to values, represented as a list

of mapping to locations to values, (ℓ ↦−→ 𝑣 ; ℓ ′ ↦−→ 𝑤), is a heap containing two locations, ℓ and ℓ ′) with an

append function ++. The operator ⊙ is defined as the following, and the unital element 𝜖 is an empty map

().

(ℓ ↦−→ 𝑣) ⊙ (ℓ ↦−→ 𝑤) := ⊥

(ℓ ↦−→ 𝑣) ⊙ (ℓ ′ ↦−→ 𝑤) := (ℓ ↦−→ 𝑣 ; ℓ ′ ↦−→ 𝑤) where ℓ ≠ ℓ ′

𝐿 ⊙ 𝐿′ := (𝐿 ++ 𝐿′) where dom(𝐿) ∩ dom(𝐿′) = ∅

𝐿 ⊙ 𝐿′ := ⊥ where dom(𝐿) ∩ dom(𝐿′) ≠ ∅

Often times, it is useful to have an abstract characterization of resources using a resource algebra, in

order to offer user-defined ghost resources for a given separation logic. Characterizing resources with partial

commutative monoids has been used in various separation logics [NLWSD14, TB21]. Modern separation

logics, however, also use other variants of resource algebras to offer more expressive ghost resources for

the user.

92



8.4 Iris as a program logic

In this thesis, we discuss a specific variant of separation logic, namely the bunched implication (BI) logic in

the Iris framework. Iris [JSS+15, KJB+17] is a highly expressive separation logic framework for concurrent,

higher-order programs. Iris was designed to consolidate the foundations of modern separation logics, and

is used for higher-order imperative languages such as Rust and ML. The Iris framework is supported by a

vibrant and active community of researchers and developers. The ecosystem around Iris includes libraries,

tools, and case studies that further extend its applicability and utility.

We present in this section a simplified "core" of Iris 4.0 that is relevant for using Iris as a separation

logic. We denote the BI logic of Iris as biIris. The other features of Iris will be explained as necessary in the

following chapters. In Chapter 10, we will further explain the ghost theory and resource algebra of Iris,

as we define a ghost theory for LLVM IR in biIris. In Chapter 11, we will give an overview of the standard

model of Iris in order to explain the model constructed in this thesis.

8.4.1 Base logic: a bunched implication (BI) logic

We present a fragment of the biIrislogic that is relevant to this thesis. The fragment is Iris𝑙𝑖𝑔ℎ𝑡 (“Iris without

the step-indexing”), where we keep the basic logic of BI and the persistence modality, but we ignore the

step-indexing aspects of Iris. We can view this logic as an extension to the set of assertions introduced in

8.2.

Iris𝑙𝑖𝑔ℎ𝑡assertions, distilled. 24

Propositions 𝑃,𝑄 ::= ⌜𝜙⌝ | 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | □𝑃 | wp 𝑒 {𝑣 .𝑃 (𝑣)}

Iris𝑙𝑖𝑔ℎ𝑡 is an embedded logic within themeta-logic of Coq. We can state logical assertions from themeta-logic

using the notation ⌜𝜙⌝ to state a Coq proposition 𝜙 .

As a separation logic, it has separating conjuction ∗ and the separating implication (magic wand)

operator −∗ . The ghost resources in the logic can be user-defined, and can be instantiated to any resource
24Note that this simplified presentation of Iris𝑙𝑖𝑔ℎ𝑡 ignores the discussion around namespaces and ghost updates.
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that satisfies the algebraic properties of a camera (a generalization of a partial commutative monoid).

The judgment 𝑃 ⊢ 𝑄 denotes entailment, and is a statement in the meta-logic of Coq. The introduction

and elimination of the magic wand operator with respect to entailment is as follows.

𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −∗ 𝑅 WandIntro

𝑃 ⊢ 𝑄 −∗ 𝑅
𝑃 ∗𝑄 ⊢ 𝑅 WandElim

Iris𝑙𝑖𝑔ℎ𝑡 is an affine logic, which means that propositions which state ownership over a resource cannot

be duplicated. More precisely, the structural rule of contraction is rejected in this logic.

𝑃 ∗ 𝑃 ⊢ 𝑄
𝑃 ⊢ 𝑄 RejectedContraction

𝑃 ⊢ 𝑄
𝑃 ∗ 𝑅 ⊢ 𝑄 AcceptedWeakening

Unlike a linear logic, it does not reject the weakening rule as well. In practice, linear logic "must use a

resource exactly once," whereas affine logics "must use a resouce at most once." Affine logics are often useful

for reasoning about memory management, as in practice allocated addresses do not necessarily need to be

used, but should not be used more than once as it may lead to data races or the double-freeing pointers.

8.4.2 Weakest preconditions, and the persistent modality

The weakest precondition statement wp 𝑒 {𝑣 .𝑄 (𝑣)} is the core to using Iris𝑙𝑖𝑔ℎ𝑡as a Hoare logic. The

proposition wp 𝑒 {𝑣 .𝑄 (𝑣)} asserts that if 𝑒 terminates, the resulting value 𝑣 satisfies the postcondition 𝑄 .

Hoare triples {𝑃}𝑒{𝑣 .𝑄 (𝑣)} are defined as 𝑃 ⊢ wp 𝑒 {𝑣 .𝑄 (𝑣)}. The definition of wp involves the model of

Iris𝑙𝑖𝑔ℎ𝑡 , which we will discuss further in Section 11.2.

Iris𝑙𝑖𝑔ℎ𝑡also has a persistent modality □ 𝑃 in order to use previously-proved Hoare triples. Hoare triples

{𝑃}𝑒{𝑣 .𝑄 (𝑣)} can be embedded in Iris𝑙𝑖𝑔ℎ𝑡with 𝑃 −∗ wp 𝑒 {𝑣 .𝑄 (𝑣)}, and these assertions must be duplicable

in order to be reused.

The main rules for persistence is as follows.

PersDup □𝑃 ⊢ (□𝑃) ∗ (□𝑃) PersElim □𝑃 ⊢ 𝑃

The rule PersDup states that any persistent statement can be duplicated, and PersElim states that any

persistent statement can eliminate its modality.
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With the weakest precondition and persistent modality, Iris𝑙𝑖𝑔ℎ𝑡can be used as a Floyd-Hoare style

separation logic. In the next chapter, we will see the relational variant of this logic, along with a construction

of a ghost theory for LLVM IR. For more details about the foundation of the Iris framework, we refer the

readers to Jung et al [JKJ+18].
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Chapter 9

Velliris: A Relational Separation Logic for LLVM IR

In the previous chapter, we have introduced the basics of separation logic and how to use them to reason

about the correctness of programs. This chapter introduces Velliris, the first relational separation logic

framework for LLVM IR, integrated with the VIR formal semantics. The logical framework allows expressive

reasoning principles about LLVM IR programs, with a practical ghost theory over LLVM IR resources.

Formally, Velliris is implemented by constructing, within the Iris separation logic framework, a novel and

general coinductive simulation over Interaction Trees with interpretations into state monads. We prove the

logic sound by establishing a contextual adequacy theorem that lifts simulation results from the embedded

logic to the ambient Coq logic. To demonstrate Velliris’ utility, we focus on verifying optimizations that

exploit LLVM IR’s memory attributes and also prove correct a loop invariant code motion example, both of

which were inexpressible in prior versions of VIR.

9.1 Introduction

There are at least two key components to any formally verified software effort (besides the software itself):

(1) a formal semantics that characterizes the meaning of the constructs of the programming language in

which the software is written, and (2) some kind of program logic in which the developer expresses the

specification of the program and builds a proof that the program meets that specification. These two pieces

must fit together: the constructs of the logic must accord with the behaviors that they purport to describe,

i.e., the logic should be sound with respect to the semantics.

One influential and prominent example of such a framework is given by CompCert [Ler09] and the

Verified Software Toolchain (VST) [App11, CBG+18], which has been used to verify various data structures

and applications implemented in C [KLL+19, ZHK+21, MAN17, BPYA15]. CompCert’s success has ushered

in a golden age of software formalization, and there are now many efforts to produce similar results for a

wide variety of programming languages and systems (see Ringer, et al’s survey [RPS+19b])—research on

both formal language semantics and program logics is flourishing!
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Nevertheless, formal verification is still typically expensive in terms of both time and effort, and

technically challenging, often requiring significant experience with complicated tools such as Coq [Tea20]

and the facility with mathematical logic to correctly specify and prove the desired metatheoretic and system

properties. For that reason, there is incentive to try to develop frameworks that can lighten the load of

formal development, by allowing work on language semantics and program logics to be re-used and shared.

On the language semantics side, one promising approach is that of interaction trees (ITrees) [XZH+20],

a data structure for representing computations as potentially infinite trees of “uninterpreted” events. Rich

computational behaviors can be modeled by interpreting those events into different monads [Mog89b]

that realize different effects, such as state, errors, I/O, or nondeterminism [YZZ22]. Such layered monadic

interpreters [Ste94] offer a modular and compositional approach to building language semantics. Since

their introduction, ITrees and related variants have been used in many contexts [FHW21, SZ21, LXK+22,

SHC+23, SWYS23, SSS+23, SCL+23]. Most relevant to this work is their use in Vellvm [ZBY+21]—a Coq-

based semantics for a large, practical subset of LLVM IR [LA04]. We refer to this formalized subset of LLVM

IR as VIR, following Zakowski, et al.

On the program logic side, Iris [JSS+15] stands out as a flexible way to construct language-specific

(concurrent) separation logics, the state-of-the-art way to reason about complex software. Iris is a Coq-based

framework that provides infrastructure and general-purpose metatheory for creating language-specific

program logics. Key to its design is a notion of “ghost resources” and “ownership” that can be used to

soundly model various aspects of program semantics. It too has seen widespread adoption, and so Iris has

been used to develop program logics for reasoning about Rust [JJKD17, MDJD22], web assembly [RGL+23],

ARM [SHL+22], data structures [CJS+23, SLK+21], distributed systems [SJT+23, KJTO+20], and, recently,

CompCert semantics [MD24] (among many other applications).

A natural idea is to try to marry these two approaches, that is, to define a sound program logic within

Iris for reasoning about ITrees-defined semantics such as those found in Vellvm, and there have indeed

been efforts along these lines [SSS+23, SCL+23]. However, these prior approaches have concentrated on

core calculi and comparatively simple languages. Scaling those techniques up in a way that is suitable for

reasoning about Vellvm’s VIR semantics is the main contribution of this thesis, but achieving it is not trivial.

The Iris infrastructure was designed to work with operational semantics, but those properties are
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at odds with the approach of layered, monadic interpreters over coinductively-defined trees used by VIR,

and the differences are significant. To reconcile them, we build the machinery needed to reason about

ITrees in a program logic, following the example of Simuliris [GSS+22]. More specifically, we provide a

novel coinductive simulation of Interaction Trees as a weakest-precondition model in Iris. The weakest-

precondition model is the basis for a relational Hoare “quadruple” that relates a source and target program

to given pre- and post-conditions. Whereas typical models built in Iris use a weakest-precondition model

based on step-indexing and operational semantics, our construction provides a coinductive simulation over

ITrees by building a Knaster-Tarski mixed inductive-coinductive fixpoint in the logic of Iris. On top of

this model, we provide expressive coinductive reasoning principles over fixpoint combinators for iteration

and mutual recursion, features necessary to model VIR. (Notably, Simuliris also eschews step-indexing

in favor of coinduction principles, but the logics built with it are tailored for reasoning about concurrent

programs represented using small-step operational semantics and it isn’t applicable “out of the box” to

VIR’s semantics.)

To demonstrate the utility of this approach, we then build a program logic, Velliris, for reasoning about

VIR code in Iris and show that it is adequate for reasoning about (a large subset of) Vellvm’s VIR semantics.

The key definition is a notion of refinement between two VIR programs, and the key result is a proof

of contextual refinement, which can be used to (among other things) justify the correctness of program

transformations. Importantly, and novel to this work, Velliris supports LLVM IR’s attribute specifications,

which record the compiler’s assumptions about (potentially external) function calls—attributes like readonly

or argmemonly affect which optimizations are applicable because they constrain the assumed behavior of

the functions. Such specifications are easy to encode in Velliris, but to implement them, we had to rectify

some deficiencies in Vellvm’s handling of state and external calls.

Defining separation logic reasoning principles in Velliris gives an elegant specification to side-effects

in LLVM IR and helps us prove optimizations in a modular way. We develop a robust theory of “ghost

resources” and reasoning principles for VIR semantics in Velliris. Importantly, this separation logic greatly

streamlines proofs: prior to this development, reasoning about VIR code had to be done over the entire

program state, which includes the global and local environment, stack, and the entire memory. For larger

pieces of code, proofs of optimizations quickly became excruciatingly painful due to the lack of localized
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reasoning about state. For this reason, prior VIR verification efforts concentrated mainly on control-flow

optimizations. The new Velliris logic is useful for proving properties of VIR code, and we illustrate that by

proving the correctness of an instance of loop-invariant code motion in the presence of external calls.

To summarize, the contributions of this part are the following:

• We develop an instance of a relational, coinductive weakest precondition model of Iris which supports

a monadic semantics based on the Interaction Trees framework. Section 11.2 describes the model and

the proof of adequacy. The proof of adequacy lifts results from the embedded logic to the ambient

Coq logic, and also demonstrates that the embedded simulation is compatible with the equational

theory already present in the metatheory of VIR.

• We develop a separation logic for Vellvm’s VIR, with a relational Hoare quadruple defined with

the ITree-based weakest precondition, by defining a ghost theory for VIR resources. The relational

reasoning techniques and core properties are described in Section 9.2.

• We enable reasoning about function calls that have memory-relevant attribute specifications. The sim-

ulation in Velliris is aware of a logical interpretation for memory attributes, and controls permissions

based on the type of attribute decorated on a function call. This is discussed in Section 9.3.

• We develop a formalization and contextual refinement proof for our logic, which is presented in

Section 11.3. This involves performing coinductive proofs about iteration and mutual recursion in

Velliris (Section 9.4). We use these reasoning principles to reason about a simple loop invariant code

motion algorithm in Section 9.4.2. The class of transformations based on loops and reordering calls

demonstrated in this thesis are optimizations which are either too painful, or impossible, to prove

with prior versions of VIR.

9.2 The Program Logic of Velliris

Velliris is a relational separation logic framework for VIR, allowing for modular reasoning about program

transformations. Instead of building a separation logic from scratch, we build on Iris’s base logic and

leverage its expressive support for separation logic resources.
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{𝑃} 𝑒𝑠 {𝑣𝑠 . Ψ 𝑣𝑠 }src ∀𝑣𝑠 . Ψ 𝑣𝑠 −∗ 𝑒𝑡 ⪯ 𝑘𝑠 𝑣𝑠 {Φ}
{𝑃} 𝑒𝑡 ⪯ 𝑥 ← 𝑒𝑠 ; ; 𝑘𝑠 𝑥 {Φ}

SourceFocus

{𝑃} 𝑒𝑡 {𝑣𝑡 . Ψ 𝑣𝑡 }tgt ∀𝑣𝑡 . Ψ 𝑣𝑡 −∗ 𝑘𝑡 𝑣𝑡 ⪯ 𝑒𝑠 {Φ}
{𝑃} 𝑥 ← 𝑒𝑡 ; ; 𝑘𝑡 𝑥 ⪯ 𝑒𝑠 {Φ}

TargetFocus

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝑣𝑡 𝑣𝑠 . Ψ 𝑣𝑡 𝑣𝑠 } ∀𝑣𝑡 𝑣𝑠 . Ψ 𝑣𝑡 𝑣𝑠 −∗ 𝑘𝑡 𝑣𝑡 ⪯ 𝑘𝑠 𝑣𝑠 {Φ}
{𝑃} (𝑥 ← 𝑒𝑡 ; ; 𝑘𝑡 𝑥) ⪯ (𝑥 ← 𝑒𝑠 ; ; 𝑘𝑠 𝑥) {Φ}

SimBind

{Φ 𝑣𝑡 𝑣𝑠 } ret 𝑣𝑡 ⪯ ret 𝑣𝑠 {Φ} SimValue
{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {Φ}

{𝑃 ∗ 𝑅} 𝑒𝑡 ⪯ 𝑒𝑠 {𝑣𝑡 𝑣𝑠 . Φ 𝑣𝑡 𝑣𝑠 ∗ 𝑅}
SimFrame

Figure 9.1: Benton-style relational reasoning (+ frame rule)

While the underlying model for Velliris is itself novel and interesting—no existing instantiation of Iris

concerned simulations over coinductive datatypes such as ITrees—we defer its discussion to 11.2 and focus

on the user-interface of Velliris here.

9.2.1 Benton-style relational reasoning (+ frame rule)

In this section, we explain the Benton-style relational Hoare reasoning supported by Velliris. Specifically,

we build a relational Hoare quadruple that allow local reasoning for the relational simulation.

The Hoare quadruple {𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝑣𝑡 𝑣𝑠 .Φ 𝑣𝑡 𝑣𝑠 } denotes that under the relational precondition 𝑃

(typically about the resources of both source and target programs), the source expression 𝑒𝑠 simulates the

target expression 𝑒𝑡 . If the programs both terminate, the returned values (bound by 𝑣𝑡 and 𝑣𝑠 ) must be

related by the postcondition Φ, otherwise they diverge in simulation. In this sense, this relational Hoare

quadruple is also a termination-preserving relation akin to the Hoare quadruple derived from the eutt

relation.

The relational reasoning rules for this quadruple are given in Figure 9.1.25 The logic provides unary

reasoning principles through source- and target- focus rules (SourceFocus, TargetFocus), and a cut

principle for the bind operator (SimBind). These rules are standard, and mimic the already-present

reasoning principles on VIR.

Velliris also supports the well-known “frame rule” of separation logic via the SimFrame rule. It enables

local reasoning through the separating conjunction, 𝑃 ∗𝑄 , which asserts that 𝑃 and 𝑄 are assertions about

disjoint resources. Then, the SimFrame rule states that we can frame a resource 𝑅 around a simulation
25All of the rules are proved as lemmas in Coq, using the weakest-precondition model defined in Section 11.2.
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Global ::= id ↩→V
Local ::= id ↩→V

Frame ::= list Addr

LocalStack ::= list Local

id ::= string Addr ::= Z ∗Z

FrameStack ::= list Frame

Allocated ::= list Addr

Mem ::= Allocated ∗ (Addr ↩→ list byte)
byte ::= SUndef | Byte Z | Ptr Addr | PtrFrag

Figure 9.2: VIR state

proof. Intuitively, a simulation proof with precondition 𝑃 accesses just the resources specified by 𝑃 , and

thus preserves any other resources that could be specified as 𝑅.

9.2.2 VIR Resources

A crucial part of developing a program logic for a language in Iris is coming up with ghost theory for its

state. For VIR, the state involves a global environment, local environment, memory, and the stack which

keeps track of both the (1) local registers and (2) the stack-allocated variables. We first explain the VIR state,

and then introduce the ghost resources via the rules of the program logic and examples. The full-fledged

ghost theory of Velliris is elided in this thesis due to space constraints, and is available in the technical

appendix.

9.2.2.1 VIR State

VIR’s state is described in Figure 9.2. The global state is a read-only environment, a map that is instatiated

only once at initialization, mapping ids to values. The local state corresponds to the stateful component of

resources that live within the scope of a function. Because LLVM IR automatically deallocates all locally

allocated addresses upon function return, the local state must keep track of the list of addresses allocated

at the current frame. Thus, the local state consists of a local environment (Local) that maps local ids to

uvalues, and also a list of addresses (Frame) allocated at the current frame. Because a program consists of

multiple functions and thus will have multiple frames throughout its execution, it keeps track of a stack of

local environments (LocalStack) and local frames (FrameStack).

We work with a logical view of VIR memory: a map between addresses with an offset (a pair of integers

Z), which then points to a list of bytes. The representation of bytes comprises an undefined byte (SUndef)

for uninitialized bytes in memory, literal bytes (Byte), a pointer byte for locations that store an address
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(Ptr), and a pointer fragment that is used for alignment of pointer bytes in memory (PtrFrag). The memory

also keeps track of a monotonically increasing set of addresses, in order to prevent reuse of addresses (an

address from a new allocation should be guaranteed to be fresh).

Remark. Note that we discard the physical view of VIR memory (as seen in the quasi-concrete memory

model [KHM+15b]). The study of robust memory models of LLVM IR is a subject of ongoing research.

The VIR memory presented in Zakowski et al. [ZBY+21] is a quasi-concrete memory model that supports

casting between integers and pointers. Supporting integer to pointer casting in Velliris remains as future

work, along with adapting it to other advanced memory models of LLVM IR, such as the twin-memory

model [LHJ+18a], and on-going work on robust support of out-of-memory errors.

9.2.3 Velliris event laws and instruction laws

VIR formalizes categories of LLVM events, building a denotational domain over LLVM IR. The categories of

events include global state, local state, (function) calls, memory, undefined behavior, and failure. Thanks

to its event-based semantics, it is possible to give modular specifications to VIR. Each VIR instruction is

composed of several side effects. Figure 9.1 shows the memory-related primitive event laws, and a simplified

set of instruction laws that use them as their building blocks.

⟦(id, alloca (𝜏))⟧𝑖 = 𝑑𝑣 ←

trigger (AllocaV (𝜏)) ;;

trigger (LWr( ) (↑ id, 𝑑𝑣))

As an example, lets us consider LLVM’s alloca 𝜏 instruction, which

allocates a new block of memory that can store values of type 𝜏 , and

returns the address of the new memory block. The corresponding denota-

tion is given on the left. LLVM instructions are represented by a pair (𝑖𝑑, 𝑖𝑛𝑠) of a side-effectful instruction

𝑖𝑛𝑠 and an identifier 𝑖𝑑 destined to receive the result of the operation. Representing an operation (𝑖𝑑, 𝑒)

reduces to calling ⟦𝑒⟧𝑒 , the denotation of the expression being bound to the identifier, and binding its result

with the trigger of the local write LWr( ) (𝑖𝑑,𝑢𝑣) (the superscript denotes the return type of the event, which

is unit for local writes). The alloca instruction performs two side-effects: AllocaV (𝜏), which allocates

a new block in memory with size corresponding to the type 𝜏 , and LWr( ) (_, _) which writes to the local

environment.
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Memory-relevant event rules

SourceAlloca
{Allocasrc

𝑖
𝑆 ∗ Framesrc 𝑖}

trigger (AllocaV (𝜏))
{𝑣 ′𝑠 . ∃ℓ𝑠 .𝑣𝑠 = ℓ𝑠 ∗ ℓ𝑠 ↦→src new_block𝜏 ∗ Allocasrc

𝑖
{𝑧} ∪ 𝑆 ∗ Framesrc 𝑖}src

SourceLoad
{(𝑣 ∈ 𝜏) ∗ ℓ𝑠 ↦→src 𝑣}

trigger (LoadV𝑢 (𝜏,Addr(ℓ)))
{𝑣 ′𝑠 . 𝑣 ′𝑠 = 𝑣 ∗ ℓ𝑠 ↦→src 𝑣}src
SourceStore
{(𝑣 ∈ 𝜏) ∗ ℓ𝑠 ↦→src 𝑣}

trigger (Store( ) (Addr(ℓ), 𝑣 ′))
{𝑣 ′𝑠 . ℓ𝑠 ↦→src 𝑣 ′}src

UB and Exception event rules

SimUB 𝑒 ⪯ trigger (UB∅){Φ}
SimExc 𝑒 ⪯ trigger (Throw∅){Φ}

Local environment rules

LocalWrite
{(𝑖𝑑 ∉ 𝐿) ∗ Framesrc 𝑖 ∗ Localsrc

𝑖
𝐿}

trigger (LWr( ) (↑ id, 𝑣))
{𝑣 ′𝑠 . ⟨id := 𝑣⟩src

𝑖
∗ Framesrc 𝑖 ∗ Localsrc

𝑖
({[%𝑖𝑑]} ∪ 𝐿)}src

LocalRead
{⟨id := 𝑣⟩src

𝑖
∗ Framesrc 𝑖}

trigger (LRdV𝑢 (↑ id))
{𝑣 ′𝑠 . 𝑣 ′𝑠 = 𝑣 ∗ ⟨id := 𝑣⟩src

𝑖
}src

Memory-relevant instruction rules

SourceInstrAlloca
{(𝑥 ∉ 𝐿) ∗ Framesrc 𝑖 ∗ Allocasrc

𝑖
𝑆 ∗ Localsrc

𝑖
𝐿}

%𝑥 Id = alloca 𝜏
{∃ℓ𝑠 . ℓ ↦→src new_block𝜏 ∗ ⟨x := Addr(ℓ)⟩src

𝑖
∗ Framesrc 𝑖 ∗ Allocasrc

𝑖
𝑆 ∗ Localsrc

𝑖
({[%𝑥]} ∪ 𝐿)}src

SourceInstrLoad
{(𝑣 ∈ 𝜏) ∗ (𝑥 ∉ 𝐿) ∗ ℓ ↦→src

𝑞 𝑣 ∗ ⟨ptr := Addr(ℓ)⟩src
𝑖
∗ Framesrc 𝑖 ∗ Localsrc

𝑖
𝐿}

%𝑥 Id = load 𝜏, 𝜏 ∗ %ptr
{ℓ ↦→src

𝑞 𝑣 ∗ ⟨ptr := Addr(ℓ)⟩src
𝑖
∗ ⟨x := Addr(𝑣)⟩src

𝑖
∗ Framesrc 𝑖 ∗ Localsrc

𝑖
({[%𝑥]} ∪ 𝐿)}src

SourceInstrStore
{(𝑣 ∈ 𝜏) ∗ (𝑣 ′ ∈ 𝜏) ∗ (𝑥 ∉ 𝐿) ∗ ℓ ↦→src 𝑣 ∗ ⟨ptr := Addr(ℓ)⟩src

𝑖
∗ Framesrc 𝑖 ∗ Localsrc

𝑖
𝐿}

%𝑥Void = store 𝜏 𝑣 ′, 𝜏 ∗ %ptr
{ℓ ↦→src

𝑞 𝑣 ∗ ⟨ptr := Addr(ℓ)⟩src
𝑖
∗ Framesrc 𝑖 ∗ Localsrc

𝑖
({[%𝑥]} ∪ 𝐿)}src

Figure 9.3: Excerpt of Velliris event and instruction rules (source triple rules are symmetric for target triple)

9.2.4 Example: A load-elimination optimization

In order to demonstrate how to use ownership reasoning to prove properties in Velliris, we prove a simple

load-elimination example.26 In the following, we aim to remove a redundant load that loads the value stored

in the newly allocated address.

{True}
%l = alloca i32

%x = store i32 42, i32* %l

ret i32 42

⪯

%l = alloca i32

%x = store i32 42, i32* %l

%y = load i32, i32* %l

ret i32 %y

{𝑣𝑡 𝑣𝑠 . 𝑣𝑡 = 𝑣𝑠 }

26To ease the presentation, we elide information about alignment and debugging information in LLVM IR syntax.
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The above Hoare quadruple states that under a trivial precondition, we can execute the source program

(right) and the optimized target program (left) and get the same return value.

In order to prove the above quadruple, we focus on the target and source programs by switching to

source and target triples, using SourceFocus and TargetFocus (see Figure 9.1). The source and target

triples each have unary separation logic rules and are mostly similar, as resource-specific rules are mainly

agnostic to whether the resource is used for the source or target program. Focusing is used in conjunction

with the sequencing rule (SimBind), so that we can focus on the subexpressions of sequenced programs.

With the focusing triples, we can prove the above example. SourceFocus focuses the quadruple

into a source triple, where we can use SourceInstrAlloca to get an allocation at a new address with

a block of memory that can fit a value of type i32. For now, let us ignore the Allocasrc , Localsrc , and

Framesrc predicates. After execution, the source program has full ownership over this location, i.e. we have

ℓ𝑠 ↦→src new_block𝜏 . As Velliris is a relational separation logic [Yan07], there are two points-to connectives,

each for the source or target program where ℓ𝑠 ↦→src 𝑣 refers to the ownership of location ℓ𝑠 at source

memory, and ℓ𝑡 ↦→tgt 𝑣 for target memory, respectively. The superscript notation src and tgt are used

throughout this thesis to distinguish between the source and target resources. ⟨l := Addr(ℓ)⟩src𝑖 is an

assertion about the local environment, where it denotes that the local id l stores the address value ℓ (ignore

the subscript 𝑖 for now). Then, we can use the SourceInstrStore rule to update the points-to with the

value 42 of type i32. Subsequently, the SourceInstrLoad rule can be used to get the value 42 onto the

location %y and the source program finally returns the value 42.

Then, we can use symmetric reasoning for the target program, resulting in {ℓ𝑡 ↦→tgt 42 ∗ ℓ𝑠 ↦→src 42}

ret i32 42 ⪯ ret i32 42 {𝑣𝑡 𝑣𝑠 . 𝑣𝑡 = 𝑣𝑠 }. We conclude the proof with SimValue with the trivial obligation

that 42 is equal to itself.

9.2.5 Stack-local resources in Velliris

In fact, for simplicity, we have omitted one key component in the above verification: the “frame resources”

responsible for frame-local states. These resources play an interesting role at function entry and exit and

will be discussed further in Section 9.3. For now, we only give their basic ideas needed for a thorough

understanding of Figure 9.3.
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One key feature of LLVM IR is the stack-allocated memory obtained through alloca instructions.

The instruction allocates memory on the stack frame of the currently executing function, which will

be automatically freed when this function returns to its caller. In VIR, at function entry, a fresh stack

frame containing only the passed arguments in its local environments is created, and at function exit, the

local environment and stack-allocated memories are removed. The ghost theory in Velliris deals with

this automatic deallocation by keeping track of the stack frame and the associated set of stack-allocated

locations.

Frame resources For the source program, the Framesrc 𝑖 denotes the current frame with index 𝑖 ,

Allocasrc𝑖 𝑆 is the set of locations 𝑆 that is stack-allocated at frame 𝑖 , and Localsrc𝑖 𝐿 is the local envi-

ronment 𝐿 at frame 𝑖 . For local environment assertions ⟨x := 𝑣⟩src𝑖 the subscript 𝑖 denotes the frame

that the local stack is associated with. The target program has corresponding resources (Frametgt 𝑖 ,

Allocatgt
𝑖
𝑆 , and Localtgt

𝑖
𝐿) as well. We use a bundled notation for the frame-relevant resources, with the

following definition: FrameRessrc𝑖 (𝐴, 𝐿) ≜ Framesrc 𝑖 ∗ Allocatgt
𝑖

𝐴 ∗ Localsrc𝑖 𝐿 and FrameRestgt
𝑖
(𝐴, 𝐿) ≜

Frametgt 𝑖 ∗ Allocatgt
𝑖
𝐴 ∗ Localtgt

𝑖
𝐿.

9.3 Relaxed call simulation and semantics for VIR

Velliris supports LLVM IR’s attribute specifications, which record the compiler’s assumptions about (po-

tentially external) function calls—attributes like readonly or argmemonly affect which optimizations are

applicable because they constrain the assumed behavior of the functions. The specifications are straightfor-

ward to encode in Velliris due to its relaxed call simulation that we introduce in this section. To implement

the relaxed call simulation, we also rectify in the way some deficiencies in Vellvm’s handling of external

state.

9.3.1 Velliris call simulation: overview

Unlike the prior VIR simulation, the Velliris calls simulation offers the following new features: (1) calls in

simulation do not need to be exactly equal, such that related arguments can be passed around to function

calls, (2) the simulation allows callees to (mutably, or immutably) borrow resources from the caller, keeping
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track of “checked-out” resources, and (3) the simulation is aware of a logical interpretation for memory

attributes, and controls permission based on the type of attribute decorated on a function call.

The call simulation in Velliris is like a librarian: when a patron (i.e. a function call) checks out a

book (i.e. acquiring ownership of a resource), the librarian updates the system to indicate which book has

been borrowed, checks whether the patron should have full access to the material (or a partial scan) (i.e.

permission-based ownership), and makes sure that all resources have been safely returned.

Pointers can be leaked to function calls through ownership transfer. The ownership transfer can be

exclusive (i.e. the call has mutable access to the pointer) or fractional (i.e. the call only has read-only

access to the pointer). In order to transfer ownership, we leak the resources as a public bijection between

pointers to express that a location ℓ𝑡 from the target program and ℓ𝑠 from the source program, which stores

related bytes to memory. The bureaucratic resource that keeps track of which resource has been leaked to

the public is the checkout set, which describes how much of a pair of publicly related resources has been

“checked out” for use.

9.3.2 Value and Memory Relation

The Velliris call simulation allows passing related pointers to function calls, where the pointer address being

passed on to the calls on source and target programs may not be exactly equal, but are related by a certain

value relationV . In the case of VIR, there are two notions of values (under-defined values and dynamic

values), and the values stored in memory is the serialized bytes of the values. 27 Because of this, we need

to craft a value relation that will be stable over memory operations, such as reads and writes, along with

respecting the notion of defined and under-defined values that are specific to the VIR language.

Dynamic values are the domain of dynamic values that the language can manipulate include 1, 8, 32 and

64 bit integers, memory addresses (Addr(𝑎)), arrays and structs, and poison values , which denote deferred

undefined behavior. 28 Under-defined values contain undef values, a set semantics model for deferred

undefined behaviors. Because we work in a deterministic setting, we show relations between concretized

results of under-defined values.
27The value relation without subscript is an overloaded notation for both dynamic values and under-defined values.
28The memory model used in Velliris does not support storing poison values to memory, which is why do not present a

refinement relation over poison values in the value relation. Adapting Velliris to be equipped with a more robust memory model
with poison support is left for future work.

106



Byte relation

VSByte (Byte(𝑏1),Byte(𝑏2)) ≜ 𝑏1 = 𝑏2

VSByte (Ptr(𝑎1), Ptr(𝑎2)) ≜ 𝑎1 ↔ℎ 𝑎2

VSByte (PtrFrag, PtrFrag) ≜ ⊤
VSByte (SUndef, SUndef) ≜ ⊤

Dynamic value relation

VDyn (Addr(𝑎1),Addr(𝑎2)) ≜ 𝑎1 ↔ℎ 𝑎2

VDyn (poison, poison) ≜ ⊤
VDyn (Intsz (𝑖1), Intsz (𝑖2)) ≜ 𝑖1 = 𝑖2

VDyn (Float(𝑓1), Float(𝑓2)) ≜ 𝑓1 = 𝑓2

VDyn (Double(𝑑1),Double(𝑑2)) ≜ 𝑑1 = 𝑑2

VDyn (Array(𝑙1),Array(𝑙2) ≜ ∀𝑖,VDyn (𝑙1 [𝑖], 𝑙2 [𝑖])
VDyn (Struct(𝑙1), Struct(𝑙2) ≜ ∀𝑖,VDyn (𝑙1 [𝑖], 𝑙2 [𝑖])

Under-defined value relation

VU (𝑢1, 𝑢2) ≜ ∀𝑑𝑣2, ⟦𝑢2⟧𝐶 = ret 𝑑𝑣2 −∗
∃𝑑𝑣1, ⟦𝑢1⟧𝐶 = ret 𝑑𝑣1 ∗ VDyn (𝑑𝑣1, 𝑑𝑣2)

Memory block relation

VBlk (𝑚1,𝑚2) ≜ (∀𝑘𝑣, 𝑘 [𝑚1] = 𝑣 −∗
∃𝑣 ′, 𝑘 [𝑚2] = 𝑣 ′ ∗ VSByte (𝑣, 𝑣 ′))∗
(∀𝑘, 𝑘 [𝑚1] = ⊥ ⇒ 𝑘 [𝑚2] = ⊥)

Memory read relation

V𝜌

Blk (𝑚1,𝑚2) ≜ (∀𝜏 𝑜,WFDyn𝜏 (𝜏) −∗
VU (𝑚1 [𝑜]𝜏 ,𝑚2 [𝑜]𝜏 ))

Figure 9.4: Value and Memory relation
Figure 9.4 shows the value relation for bytes, dynamic values, and under-defined values. The byte

relation relates literal bytes with exact equality, and address bytes using the bijection relation. Pointer

fragments used for alignment and undefined bytes are always related. The dynamic value relation definition

is also straightforward; it will relate two dynamic values if they are of the same type and their corresponding

elements are related.

For the under-defined values, we should note that the setting of Velliris is deterministic. Thus, the

under-defined values at concretization (⟦−⟧𝐶 ) will either translate an already concrete value, or return the

default value for its given type. Given these definitions, we can define a relation over two logical blocks.

The following derived properties of value relations show that the byte relation, uvalue relation, and the

dvalue relation are stable over serialization (−↑byte ), uvalue-casting (↑ −), and concretization (⟦−⟧𝐶 ).

⟦𝑢𝑣⟧𝐶 = ret 𝑑𝑣 ⟦𝑢𝑣 ′⟧𝐶 = ret 𝑑𝑣 ′
VDyn (𝑑𝑣, 𝑑𝑣 ′)
VU (𝑢𝑣,𝑢𝑣 ′)

ValConc
VDyn (𝑑𝑣, 𝑑𝑣 ′)
VU (↑ 𝑑𝑣, ↑ 𝑑𝑣 ′)

UrelLift

VDyn (𝑑𝑣, 𝑑𝑣 ′)

|𝑑𝑣↑byte | = |𝑑𝑣 ′↑byte |
DrelSerial

VDyn (𝑑𝑣, 𝑑𝑣 ′)

∀𝑛,VSByte (𝑑𝑣↑byte [𝑛], 𝑑𝑣 ′↑byte [𝑛])
ByteRelLift

VBlk (∅, ∅)
Empty VBlk (NewBlock𝜏 ,NewBlock𝜏 )

NewBlock

VBlk (𝑚1,𝑚2)
V𝜌

Blk (𝑚1,𝑚2)
MemRead

VBlk (𝑏1, 𝑏𝑠 ) VDyn (𝑑𝑣1, 𝑑𝑣2)

VBlk (𝑏1 [𝑜 ↦→ 𝑑𝑣
↑byte
1 ], 𝑏2 [𝑜 ↦→ 𝑑𝑣

↑byte
2 ])

WriteStable

Figure 9.5: Value and memory relation properties
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9.3.2.1 Memory relation

Figure 9.4 shows the memory-relevant relations. TheVBlk relation relates each byte in memory between

source and target. If there is a byte in the source memory, then there must be a corresponding byte in the

target memory that is related by the byte relationVSByte. TheV𝜌

Blk relation is the memory read relation.

LLVM IR is peculiar in that it can read from memory at not only any offset, but also at any well-formed

type. The definitionWFDyn𝜏 (−) formalizes the definition of a well-formed type (a non-empty type), and the

memory read relationV𝜌

Blk relates two logical blocks if for all well formed types and offset, the corresponding

reads are related by the under-defined value relationVU.

The value relationV used to relate two logical blocks is defined asV(𝑚1,𝑚2) := VBlk(𝑚bytes
1 ,𝑚

bytes
2 ).

Now having a well-behaved relation for memory blocks (a list of bytes), we can define the value relation

over logical blocks (which is a tuple that keeps track of a memory block and its size).

The derived properties of the block-related relations are described in Figure 9.5. Empty states that the

empty memory blocks are related. NewBlock states that a new block with a given type is related to itself.

TheMemRead rule states that if two memory blocks are related bytewise (byVBlk), then the corresponding

reads are related (by V𝜌

Blk). The WriteStable rule states that if two blocks are related bytewise, then

writing a related value to the same offset will also be related.

9.3.2.2 Leaking pointers and the location bijection

The notion of similarity in values is captured by the value relationV , as described in the previous section.

In the case of pointers, the locations must not be exclusively owned so that the callee may mutate memory.

We introduce the public bijection assertion ℓ𝑡 ↔ℎ ℓ𝑠 which states that target location ℓ𝑡 and source location

ℓ𝑠 are an escaped pair of related locations.

When pointers are passed along a function call, we leak the ownership into the public so that the call

can modify the location. Depending on the function attribute, we have different specifications on how

much information can be leaked, so that we can limit control over how much information the function call

has access to.
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LocEscape
{ℓ𝑡 ↔ℎ ℓ𝑠 ∗ 𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {Φ}

{ℓ𝑡 ↦→tgt 𝑣𝑡 ∗ ℓ𝑠 ↦→src 𝑣𝑠 ∗ V(𝑣𝑡 , 𝑣𝑠 ) ∗ 𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {Φ}
SimLoad
{ℓ𝑡 ↔ℎ ℓ𝑠 ∗ checkout 𝐶 ∗ ((ℓ𝑡 , ℓ𝑠 ) ∉ 𝐶 ∨𝐶 (ℓ𝑡 , ℓ𝑠 ) < 1)}
trigger (LoadV𝑢 (𝜏,Addr(ℓ𝑡 ))) ⪯ trigger (LoadV𝑢 (𝜏,Addr(ℓ𝑠 )))
{𝑣𝑡 , 𝑣𝑠 .V(𝑣𝑡 , 𝑣𝑠 ) ∗ checkout 𝐶}
SimStore
{ℓ𝑡 ↔ℎ ℓ𝑠 ∗ V(𝑣𝑡 , 𝑣𝑠 ) ∗ checkout 𝐶 ∗ (ℓ𝑡 , ℓ𝑠 ) ∉ 𝐶}
trigger (Store( ) (Addr(ℓ𝑡 ), 𝑣𝑡 )) ⪯ trigger (Store( ) (Addr(ℓ𝑠 ), 𝑣𝑠 ))
{𝑣𝑡 , 𝑣𝑠 .V(𝑣𝑡 , 𝑣𝑠 ) ∗ checkout 𝐶}

Figure 9.6: Bijection laws (excerpt.)

9.3.2.3 Checkout set

The checkout set checkout 𝐶 controls how much information has been leaked to the public. It keeps track

of all currently leaked (public) locations, and the amount of information leaked through ownership. For

instance, if there is a pair of locations (ℓ𝑡 , ℓ𝑠) in 𝐶 , and 𝐶 (ℓ𝑡 , ℓ𝑠) = 1, the ownership for this pair of locations

“has been fully checked out“, meaning that the location cannot be accessed through ownership until the

ownership is returned to the checkout set. On the other hand, if there is pair of locations (ℓ𝑡 , ℓ𝑠) in 𝐶 , and

(ℓ𝑡 , ℓ𝑠) ∉ 𝐶 , the locations are available for checkout (the range of values used in the checkout set is (0, 1], as

is standard in fractional ownership). To illustrate the behavior of how loads and stores interact with the

checkout set, the excerpt of the rules are shown in Figure 9.7.

The bijection ℓ𝑡 ↔ℎ ℓ𝑠 is public knowledge, and thus it is a duplicable resource. Thus we are able to

have knowledge about the locations ℓ𝑡 , ℓ𝑠 after the call. The rest of the local resources can also be retained

through using the frame rule (since we are in a separation logic, all proof rules are compatible with framing).

In order to take advantage of the framing rule along with the public bijection, we must show the adequacy

of our function calls. The simulation relation is an open simulation, which allows skipping over calls to the

same function in source and target programs. This would only be sound if the function that is skipped over

respects the ownership. To ensure the soundness of this rule, the top-level adequacy proof in Section 11.2

assumes that all functions in the program satisfy the simulation relation.
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readonly-call
{Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠𝐴𝑠𝐿𝑠 ∗ checkout 𝐶 ∗

−→V(args𝑡 , args𝑠 ) ∗ (∀(ℓ𝑡 , ℓ𝑠 ) ∈ 𝐶.𝐶 (ℓ𝑡 , ℓ𝑠 ) = 𝑞 ∧ 𝑞 < 1)}
call 𝜏 𝑓 (𝑎𝑟𝑔𝑠𝑡 ) readonly ⪯ call 𝜏 𝑓 (𝑎𝑟𝑔𝑠𝑠 ) readonly

{𝑣𝑡 , 𝑣𝑠 .Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ V(𝑣𝑡 , 𝑣𝑠 ) ∗ checkout 𝐶}

argmemonly-call
{Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ checkout 𝐶 ∗

−→V(args𝑡 , args𝑠 ) ∗ (∀ℓ𝑡 , ℓ𝑠 .(Addr(ℓ𝑡 ),Addr(ℓ𝑠 )) ∈ zip 𝑎𝑟𝑔𝑠𝑡 𝑎𝑟𝑔𝑠𝑠 −∗ (ℓ𝑡 , ℓ𝑠 ) ∉ 𝐶)}
call 𝜏 𝑓 (𝑎𝑟𝑔𝑠𝑡 ) argmemonly ⪯ call 𝜏 𝑓 (𝑎𝑟𝑔𝑠𝑠 ) argmemonly

{𝑣𝑡 , 𝑣𝑠 .Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ V(𝑣𝑡 , 𝑣𝑠 ) ∗ checkout 𝐶}

argmemonly-readonly-call
{Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ checkout 𝐶 ∗

−→V(args𝑡 , args𝑠 ) ∗ (∀ℓ𝑡 , ℓ𝑠 , (Addr(ℓ𝑡 ),Addr(ℓ𝑠 )) ∈ zip 𝑎𝑟𝑔𝑠𝑡 𝑎𝑟𝑔𝑠𝑠 −∗ 𝐶 (ℓ𝑡 , ℓ𝑠 ) < 1)}
call 𝜏 𝑓 (𝑎𝑟𝑔𝑠𝑡 ) argmemonly, readonly ⪯ call 𝜏 𝑓 (𝑎𝑟𝑔𝑠𝑠 ) argmemonly, readonly

{𝑣𝑡 , 𝑣𝑠 .Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ V(𝑣𝑡 , 𝑣𝑠 ) ∗ checkout 𝐶}

Figure 9.7: Readonly and argmemonly attribute laws

9.3.3 Call simulation

SimCall

{Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ checkout ∅ ∗
−→V(args𝑡 , args𝑠 )}

call 𝜏 𝑓 (args𝑡 ) ⪯ call 𝜏 𝑓 (args𝑠 )

{𝑣𝑡 , 𝑣𝑠 .Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ checkout ∅ ∗ V(𝑣𝑡 , 𝑣𝑠 )}

With the definition of the value relation and location bijection, we can explain the call simulation rule

(SimCall) of Velliris. Given that we have two calls to the same functions where (1) frame index on the

source and target program (2) arguments are pointwise related by the value relation (
−→V(args𝑡 , args𝑠), and

(3) all public locations in bijection are available for checkout (checkout ∅), the calls are in simulation. The

callee does not affect the caller’s frame index, and returns any resources that it might have used from the

public (so that the checkout set is ∅ after the call, again). The resulting values from the call is related to the

value relation, as we have called the same function with related arguments.

9.3.3.1 Logical interpretation of memory attributes

In LLVM IR, function attributes are behavioral specifications about a function. They are are used to enable

certain transformations over functions, where it is assumed to throw undefined behavior if its specification is

not met. The usage of attributes can be at the call-site of the function, or can be part of the declaration of the

function. Many transformation passes in LLVM IR rely on the attributes to perform certain transformations.
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Velliris gives logical specifications for reasoning about memory-relevant attributes. Thanks to the

separation logic resources we have in the framework, it is possible and straightforward to define specification

over these attributes. Figure 9.7 describes the memory-attribute relevant bijection laws. The readonly

attribute is a specification that a function call does not affect memory, thus we can specify this using our

checkout set that all public locations have already been at least partially checked out (∀(ℓ𝑡 , ℓ𝑠) ∈ 𝐶.𝐶 (ℓ𝑡 , ℓ𝑠) =

𝑞 ∧ 𝑞 < 1). The argmemonly attribute is a specification that a function call only affects any pointers that

were passed as an argument to the function, thus specifying that those locations have not been checked out

by any resource. Memory-relevant attributes may also be combined, as in the argmemonly-readonly-call.

Using these attribute specifications, it is possible to prove transformations that use memory-relevant

attributes correct.

9.3.4 Example: Store-forwarding across calls

To illustrate an example of a transformation that can occur under a call with function attributes, we show

a store-forwarding transformation across a call. Other memory attributes allow for different types of

transformations as well, such as load forwarding across calls under readonly attributes.

{FrameRestgt
𝑖𝑡
(𝐴𝑡 , 𝐿𝑡 ) ∗ FrameRessrc𝑖𝑠

(𝐴𝑠 , 𝐿𝑠 ) ∗ checkout ∅}

%l = alloca i32

store i32 42, i32* %l

%m = alloca i32

store i32 2, i32* %m

call void @foo(i32* %m) argmemonly

ret i32 %l

⪯

%l = alloca i32

%m = alloca i32

store i32 2, i32* %m

call void @foo(i32* %m) argmemonly

store i32 42, i32* %l

ret i32 %l

{𝑣𝑡 𝑣𝑠 . 𝑣𝑡 = 𝑣𝑠 ∗ FrameRestgt
𝑖𝑡
(𝐴𝑡 ∪ {[ℓ𝑡 ,𝑚𝑡 ]}, 𝐿𝑡 ∪ {[%𝑚,%𝑙]}) ∗ FrameRessrc𝑖𝑠

(𝐴𝑠 ∪ {[ℓ𝑠 ,𝑚𝑠 ]}, 𝐿𝑠 ∪ {[%𝑚,%𝑙]}) ∗ checkout ∅}

Consider the above example, where a pointer that is stored in local id %m is passed to the function

call @foo. The argmemonly attribute specifies that the call should only access the pointer being stored

at %m. Thus, its logical specification guarantees that the value allocated at %m will not be affected by the

call, and thus the store-forwarding optimization is sound. For proving the above example, we can use the

argmemonly-specific call rule (argmemonly-call) to step on both the source and target, and because the

checkout set is empty for the location in bijection, we can safely use this rule. We can conclude with our
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postcondition because the load resulting from the source program will be the same as the target, since for

the target side, the value 42 stored in %l remained the same after the call. More precisely, the points-to

ownership stating ℓ𝑡 ↦→tgt 42 and ℓ𝑠 ↦→src new_blocki32 (where ℓ𝑡 and ℓ𝑠 are the pointers stored at local

id %l on target and source, respectively) can be framed around the call to %foo in conjunction with the

argmemonly-call rule. Finally, the value stored in ℓ𝑠 will be updated to 42 using the SourceFocus and

SourceInstrStore rule, so both programs return related results.

9.3.5 Extended External Call Semantics for VIR

Here, we present the extension of the original call semantics of VIR that was necessary in order to support

expressive reasoning about function calls.

LLVM IR

itree VellvmE

EnvGGlobal env stateT (itree E1)

Local env EnvLstateT (itree E2 )*EnvG

Memory MemstateT (itree E3)* EnvL * EnvG

Figure 9.8: Stateful fragment of VIR inter-
pretation

Recall that in VIR, each event is given a semantics through

an event handler. The type signature of the events constrain

the types of the handlers that will concretely implement their

semantics. An event handler is a function that takes an input

a signature of events and outputs its interpretation into a

semantic domain (i.e., a specific monad). For VIR, its semantics

is given with event handlers and is given in layers. This is

convenient because some effects are implemented in terms

of others: memory operations, for instance, may introduce undefined behavior events. However, there

is a constraint to forming layers of interpretation: the order of interpretation matters. In general, it is a

well-known result that such layered interpretation for monads do not commute, i.e. a state event interpreted

before an exception event has a different meaning than an exception event interpreted before state. This

comes with a specific limitation with how call events are implemented in the VIR semantics. VellvmE,

the top-level type of events for LLVM IR programs, denotes the entire sum of events supported by VIR,

including exceptions, UB, and calls. Each arrow corresponds to the folding of the relevant event handler

(e.g. global event handler) over the program structure. Because the implementation of external calls can be

left unknown at the time of interpretation, its interpretation is delayed to the later layers of interpretation.

Thus, 𝐸3 has remaining syntactic call events in the program. Unfortunately, this naïve interpretation in
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Variant stateEff (E : Type -> Type) : Type -> Type :=
| StateEff {X} : S * E X -> stateEff (S * X).

Definition handle_state_eff (L: language) {E F : Type -> Type} `{stateEff E -< F}:
forall A, E A -> stateT S (itree F) A :=
fun A (e : E A) (env : state L) => trigger (StateEff (env, e)).

Definition interp_call_state {E F} :
itree (@stateE S +' E +' F) ~> stateT S (itree (@stateEff E +' F)) :=
interp_state (case_ h_state (case_ handle_stateEff pure_state)).

Definition CallEvents L := stateEff (state L) (call_events L).

(* Layer(s) of interpretation *)
Definition L0 L := state_events L +' call_events L +' E L.
Definition L1 L := CallEvents L +' E L.

Figure 9.9: Event transformer for stateful external call events

the original VIR semantics gives an overly conservative interpretation over calls, where calls to external

functions is not aware of the stateful interpretation.

Event transformers: controlling delayed interpretation Using the prior interpretation scheme of

VIR, any arbitrary event E passed onto interp_state would not be able to affect the state. However,

realistic calls may affect memory and thus we need a new method of interpretation. An event transformer

can transform a call event into a new event type that modifies a given state, by expecting an input state and

returning an output state. Figure 9.9 shows the implementation of an event transformer handle_state_eff.

Given an event Ewhich may affect state, the event can be transformed into a stateEff. Intuitively, stateEff

interprets away the state-affecting semantics of E, while keeping the syntactic marker for the original event.

Concretely, it is an event that takes in as input a pair of state and E event and outputs a new state and a value

that has the same return type as the original E event. Note that ITree events are of kind Type → Type, where

e : E A is a visible external event with an expected output of type A. The annotation stateEff E -< F

indicates that F is a sum of events that contains the event stateEff E. Using this event transformer, we can

directly thread through the state to the external call without fully interpreting the external call event.

With this event transformation scheme, we can define a new interpretation layer where call events can

affect memory. The first layer L0 is the uninterpreted layer, while layer L1 interprets away state events

while transforming the call events into a stateEff and keeping the remainder of events E uninterpreted.

This interpretation scheme allows us to define a simulation relation over a partially interpreted language,
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𝑒𝑡 ⪯ 𝑒𝑠 {Φ}
𝑒𝑡 ⪯ 𝑒𝑠 [ Φ ]

SimLift
𝑒𝑡 ⪯ 𝑒𝑠 [ Φ↑ ]
𝑒𝑡 ⪯ 𝑒𝑠 {Φ}

SimRet

□(∀Φ, 𝑒𝑡 , 𝑒𝑠 .𝐹 Φ 𝑒𝑡 𝑒𝑠 −∗ (𝑒𝑡 = tau 𝑒′𝑡 ∗ 𝑒𝑠 = tau 𝑒𝑠 ∗ 𝑒′𝑡 ⪯ 𝑒′𝑠 {((𝐹 Φ) ∨2 Φ))} ∨
(𝑒𝑡 = vis 𝑒𝑣𝑡 𝑘𝑡 ∗ 𝑒𝑠 = vis 𝑒𝑣𝑠 𝑘𝑠 ∗ handleEvent (isim ((𝐹 Φ) ∨2 Φ)) 𝑘𝑡 𝑘𝑠 𝑒𝑣𝑡 𝑒𝑣𝑠 ))

𝐹 Φ 𝑒𝑡 𝑒𝑠 −∗ 𝑒𝑡 ⪯ 𝑒𝑠 [ Φ ]
SimPaco

𝐹 𝑖𝑡 𝑖𝑠
□(∀𝑖𝑡 , 𝑖𝑠 . 𝐹 𝑖𝑡 𝑖𝑠 −∗

𝑓𝑡 𝑖𝑡 ⪯ 𝑓𝑠 𝑖𝑠 [ 𝜆𝑒𝑡 , 𝑒𝑠 .
(∃𝑟𝑡 , 𝑟𝑠 .𝑒𝑡 = ret (inl 𝑟𝑡 ) ∗ 𝑒𝑠 = ret (inl 𝑟𝑠 ) ∗ 𝐹 𝑖𝑡 𝑖𝑠 )
∨(∃𝑟𝑡 , 𝑟𝑠 .𝑒𝑡 = ret (inr 𝑟𝑡 ) ∗ 𝑒𝑠 = ret (inr 𝑟𝑠 ) ∗ Φ 𝑖𝑡 𝑖𝑠 ) ])

iter(𝑓𝑡 , 𝑖𝑡 ) ⪯ iter(𝑓𝑠 , 𝑖𝑠 ) [ Φ ]
SimIter

𝐹 𝑖𝑡 𝑖𝑠 □(∀𝑖𝑡 , 𝑖𝑠 . 𝐹 𝑖𝑡 𝑖𝑠 −∗ 𝑥 ⪯ 𝑦 [ 𝜆𝑒𝑡 , 𝑒𝑠 . Φ 𝑥 𝑦 ∗ 𝐹 𝑖𝑡 𝑖𝑠 ]
□(∀𝑖𝑡 , 𝑖𝑠 .

−→V(args𝑡 , args𝑠 ) ∗ V(𝑓𝑡 , 𝑓𝑠 ) −∗ 𝑓 (CallV𝑢 (𝑓𝑡 , args𝑡 )) ⪯ 𝑔 (CallV𝑢 (𝑓𝑠 , args𝑠 )) [ V ])
interp_mrec 𝑓 𝑥 ⪯ interp_mrec 𝑔 𝑦 [ Φ ] SimMrec

Figure 9.10: Coinductive principles in Velliris
and we discuss this simulation in the following section.

9.4 Coinductive Reasoning

The denotation of VIR programs uses ITree-based combinators for iteration such as the iteration operator

iter and the mutual recursion operator mrec. The top-level mutually-recursive control flow graph, for

instance, is defined using the mrec combinator. In this section, we provide the coinductive reasoning

principles for these combinators in Velliris, which are used for the proof of the fundamental theorem,

contextual refinement theorem (stated in the following section), and the example for loop invariant code

motion. Because we have defined our simulation as a Knaster-Tarski fixpoint in the previous section, it is

possible to define proof laws about parametric coinduction for these combinators within the Velliris logic.

9.4.1 Coinductive principles in Velliris

The coinductive principles in Velliris is described in Figure 11.4. The SimLift and SimRet rules describe

the interaction between the two simulation definitions defined in the prior section. SimPaco describes

the parametric coinduction principle, which states a standard parametric coinduction principle over lock-

stepping programs. The SimIter and SimMrec rule allows you to reason about looping programs using

standard loop invariant reasoning, instead of writing a manual coinductive proof.

iter(𝑓 , 𝑖) denotes an iterating program, where 𝑓 is the function body and 𝑖 is the initial argument over
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the function body. Given that an initial relational loop invariant 𝐹 holds over the initial arguments, two

iterating bodies are equivalent if they preserve the loop invariant for the next iteration of the loop (the inl

case denotes the “continue with the loop” case, while the inr case denotes the “loop exit” case), or satisfy

the postcondition if the iteration terminates.

While the SimPaco and SimIter rules are language-independent, the mutual recursion principle is not,

as it must be aware of the interpretation of call events. The mutual recursion law SimMrec states that a

mutually recursive function over the bodies 𝑓 and 𝑔 with initial values 𝑥 and 𝑦 can be shown equivalent

if an invariant 𝐹 is preserved over the function bodies. The proof of the mutual recursion law involves a

coinductive proof language-specific inversion laws over interpreted results of a given expression.

9.4.2 Example: Reasoning about Loop Invariant Code Motion

We prove a simple loop invariant code motion optimization to illustrate the benefits of the coinductive

reasoning principles and separation logic accessible in Velliris. Loop invariant codemotion is an optimization

algorithm for hoisting expressions out of a loop body if the expression is invariant across the execution of

the loop body.
Our simple optimization hoist a load instruction out of a body if the location it is trying to access is

disjoint from any of the locations being written to during the execution of the loop body. The specification
is straightforward to write as a separation logic statement. Given a denotation function that takes in the
predecessor block for the loop (pre) and the loop body block for the loop (body), and if the optimization
returns the instruction hoisted and the resulting loop body without it, body′, we show that:

⟦(pre, body)⟧ocfg ⪯ ⟦(pre ++[hoisted], body′)⟧ocfg

Establishing the simulation for this optimization is straightforward thanks to the frame rule and the

SimIter rule, and requires no explicit coinductive proof.
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Chapter 10

Velliris Ghost Theory

In this chapter, we explain the ghost theory in Velliris. Section 10.2.1 explains the VIR state used for Velliris,

which maintains a logical view of memory. The later sections define the ghost theory for each VIR resource,

with a particular focus on how to manage frame-relevant resources. Next, we will explain a notion of

stateful invariants that is necessary to build an Iris weakest-precondition model. Finally, we will define the

invariant for the Velliris using the ghost theory that we have defined.

10.1 Iris resource algebras

In this section, we will introduce the notation and definitions that are used in the rest of the chapter.29 To

use the BI logic of Iris, a resource algebra with a suitable ghost theory must be defined. In Section 8.3.1, we

showed an example of how to instantiate a heap as a partial commutative monoid (PCM). Iris provides a

library for a more generic notion of resource algebras named cameras. We will use generic constructions

such as authoritative and agreement algebras, and ghost maps to define the Velliris ghost theory.

10.1.1 Resource algebra

Resource algebras in Iris form a generalized variant of a partial commutative monoid, with a carrier set

that is equipped with an step-indexing aware equivalence. In Iris𝑙𝑖𝑔ℎ𝑡 , this step-indexing metric is not of

concern, so we omit the discussion about the carrier element being a metric-aware set (more precisely, a

ordered family of equivalences). The presentation here follows the definition of resource algebras in the

Semantics lecture notes by Dreyer et al[DSG+22].

A resource algebra 𝑀 is a tuple (𝐴, ⊙ : 𝐴 × 𝐴 → 𝐴,𝑉 : 𝐴 → Prop, | − | : 𝐴 → 𝐴?). The carrier type

𝐴 is a set that carries elements of the resource type. The operation ⊙ is a partial commutative monoid

operation over 𝐴. The predicate 𝑉 is a meta-level validity proposition that describes the well-formedness

of the resource. The operation | − | maps resources to its duplicable fragment.
29For a more detailed explanation of Iris resource algebras, refer to Jung et al [JKJ+18].
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Definition 6. A resource algebra is a tuple (𝐴, ⊙ : 𝐴 ×𝐴→ 𝐴,𝑉 : 𝐴→ Prop, | − | : 𝐴→ 𝐴?) satisfying:

𝑚1 ⊙𝑚2 =𝑚2 ⊙𝑚1 (commutativity)
(𝑚1 ⊙𝑚2) ⊙𝑚3 =𝑚1 ⊙ (𝑚2 ⊙𝑚3) (associativity)

|𝑚 | ∈ 𝐴⇒ |𝑚 | ⊙𝑚 =𝑚 (core identity)
|𝑚 | ∈ 𝐴⇒ ||𝑚 | | = |𝑚 | (core idem)

|𝑚 | ∈ 𝐴 ∧𝑚 ≤ 𝑛 ⇒ |𝑛 | ∈ 𝐴 ∧ |𝑚 | = |𝑛 | (core mono)
𝑚 ⊙ 𝑛 ∈ 𝑉 ⇒ 𝑎 ∈ 𝑉 (valid op)

where 𝐴? := 𝐴 ⊎ {⊥} 𝑥 ⊙ ⊥ := ⊥ ⊙ 𝑥 := 𝑥
𝑚 ≤ 𝑛 := ∃𝑐 ∈ 𝐴.𝑛 =𝑚 ⊙ 𝑐 (incl)

Definition 7. A frame-preserving update 𝑎 ⇝ 𝐵 is an operation where given 𝑎 ∈ 𝐴 and 𝐵 ⊆ 𝐴, if

∀𝑥 𝑓 ∈ 𝐴?.𝑎⊙𝑥 𝑓 ∈ 𝑉 ⇒ ∃𝑏 ∈ 𝐵.𝑏⊙𝑥 𝑓 ∈ 𝑉 . An update from an element𝑎 to𝑏 is defined as𝑎⇝ 𝑏 := 𝑎⇝ {𝑏}.

Given this definition of a resource algebra and frame-preserving updates, here are some common

resource algebras that are useful.

10.1.2 Exclusive algebra

Exclusive algebras represents a resource that can only be owned by one party. Its carrier type is Ex (𝑋 ) :=

ex(𝑥 : 𝑋 ) |  , where it denotes the exclusive elements ex or the invalid element  . The operations are

defined as:

𝑎 ⊙ 𝑏 :=  𝑎 ∈ V̄ := 𝑎 ≠  |𝑎 | := ⊥

∀𝑥,𝑦.ex(𝑥 : 𝑋 ) ⇝ ex(𝑦 : 𝑋 ) 𝑎 ≤ 𝑏 ⇔ 𝑏 =  

This resource is similar to the resource algebra on the heap ℓ ↦→ 𝑣 described earlier, as the points-to

assertions can be updated freely and cannot be owned by multiple entities.
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10.1.3 Agreement algebra

The agreement algebra is useful for describing a read-only resource that can be shared by multiple parties.

Its carrier type are finite, non-empty sets of elements,

Ag(𝑋 ) := {𝐴 ∈ 2𝑋 |𝐴 finite, non-empty} ag(𝑥) := {𝑥}.

The operations are:

𝐴 ⊙ 𝐵 := 𝐴 ∪ 𝐵 𝐴 ∈ 𝑉 := ∃𝑥 .𝐴 = {𝑥} |𝐴| := 𝐴

ag(𝑥) ⇝ ag(𝑦) ⇔ 𝑥 = 𝑦 𝐴 ≤ 𝐵 ⇔ 𝑥 = 𝑦

Agreement algebras can be duplicated freely, but its state cannot be changed.

10.1.4 Authoritative algebra

The authoritative resource algebra Auth(𝑀) is one of the most common resource algebras. This algebra

contains authoritative •(𝑎) and fragment ◦(𝑏) elements.

Its carrier type and operations are defined by :

Auth(𝑀) := Ex (𝑀)? ×𝑀 • 𝑎 := (ex(𝑎), 𝜖𝑀 ) ◦ 𝑏 := (⊥, 𝑏)
(𝑥, 𝑎) ⊙ (𝑦,𝑏) := (𝑥 ⊙ 𝑦, 𝑎 ⊙ 𝑏) 𝑉 := {(⊥, 𝑏) |𝑏 ∈ 𝑉𝑀 } ∪ {(ex(𝑎), 𝑏) |𝑏 ≤𝑀 𝑎 ∧ 𝑎 ∈ 𝑉𝑀 }
𝜖𝑀 := (⊥, 𝜖) | (𝑥, 𝑎) | := (⊥, |𝑎 |)

The authoritative element has control over the fragment elements; at any point, fragment elements

must be included in the authoritative element. Any updates must be done through the authoritative element.

One can view fragment elements as read-only elements of a resource, where the read-only view can be

changed only if the authoritative portion is updated alongside it. Given these definitions, we can now

define the Velliris resource algebra.
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10.2 Velliris resource algebra

The novel part of Velliris’s ghost theory come from its (1) frame resources, which must manage automatic

deallocations of frame-allocated locations and maintain an invariant over frames, and (2) serialized dynamic

values, which incur a particular value relation that is stable over the memory relation invariant that we have

seen in Section 9.3.2. For the bijection between source and target resources (in Section ), the Velliris ghost

theory follows the style of resource algebra in Simuliris[GSS+22], an Iris model for program simulations.

10.2.1 VIR State

The following constructs define the types needed to represent the VIR state.

Global ::= id ↩→ dvalue
Local ::= id ↩→ uvalue

Frame ::= list Addr
LocalStack ::= list Local

FrameStack ::= list Frame

Allocated ::= list Addr
Mem ::= Allocated ∗ (Addr ↩→ list byte)
byte ::= SUndef | Byte Z | Ptr Addr | PtrFrag

id ::= string

Addr ::=Z ∗Z

The global state is a read-only environment, a map that is instatiated only once at initialization, mapping

ids to dvalues. The local state corresponds to the stateful component of resources that live within the scope

of a function. Because LLVM IR automatically deallocates all locally allocated addresses upon function

return, the local state must keep track of the list of addresses allocated at the current frame. Thus, the

local state consists of a local environment (Local) that maps local ids to uvalues, and also a list of addresses

(Frame) allocated at the current frame. Because a program consists of multiple functions and thus will have

multiple frames throughout its execution, it keeps track of a stack of local environments (LocalStack) and

local frames (FrameStack).
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We work with a logical view of VIR memory: a map between addresses with an offset (a pair of integers

Z), which then points to a list of bytes. The representation of bytes contains an undefined byte (SUndef)

for initialized bytes in memory, literal bytes (Byte), a pointer byte for locations that store an address (Ptr),

and a pointer fragment that is used for alignment of pointer bytes in memory (PtrFrag). The memory also

keeps track of a monotonically increasing set of addresses, in order to prevent reuse of addresses (e.g. an

address cannot be used for a new allocation if it has been allocated before, even if the byte in the address

has been freed).

Remark. Note that we discard the physical view of VIR memory in this section. The study of robust

memory models of LLVM IR is a subject of ongoing research. The VIR memory presented in Section 3.3.3 is

a quasi-concrete memory model that supports casting between integers and pointers. Supporting integer

to pointer casting in Velliris remains as future work, along with adapting it to other advanced memory

models of LLVM IR, such as the twin-memory model[LHJ+18a], and on-going work on robust support of

out-of-memory errors.

10.2.2 Resource algebra

The resource algebra of Velliris contains seven main algebras, which are split into frame-relevant and

frame-irrelevant resources. Frame-irrelevant resources (i.e. “global” resources) include Heap, Alloc, and

Global.

Heap := Auth(Loc
fin
⇀ (Frac × Ag(Val)))

Alloc := Auth(Loc
fin
⇀ (Ag(N ?))

Global := Ag(id fin
⇀ V)

Heap controls the contents of the memory, with support for fractional ownership. Alloc controls the

size of the allocated blocks: it tracks either the size of the block, or ⊥ if the block has been deallocated.

Global controls the environment of global variables.

The frame-relevant (i.e. “local” resources) are FrameStack, FrameAlloc, LocalEnv, LocalDomain, and

LocalStack. Keeping track of the frame-relevant resources and the allocated set of addresses at the current

frame is important to facilitate automatic deallocation of frame-allocated resources at function return.
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FrameStack := Auth(℘fin(frameΓ))

LocalStack := Auth(℘fin(℘fin(id fin
⇀ V𝑢)))

FrameAlloc := Auth(℘fin(Z))

LocalEnv := Auth(id fin
⇀ V𝑢)

LocalDomain := Auth(℘fin(id))
First are the resources that keep track of the entire stack of frames. FrameStack keeps track of the stack

of frames, and the names associated with each frame on the stack. Each frame keeps track of the index,

name of the local environment, local domain, and the frame-allocated set. The LocalStack keeps track of

the stack of local environments corresponding to each stack frame. Then, there are resources that pertain

to a particular frame. The current frame is defined as the head of the frame stack. FrameAlloc controls

the allocated locations at the current frame. LocalEnv controls the current local environment, along with

LocalDomain keeping track of the domain of the local environment at the current frame.

Instantiating the global resource functor, and ghost namespaces. Using Iris’s global resource

functor, we register these algebras. Instances of these algebras are need for both the source and target

programs, and thus instances are parameterized by the corresponding tuple of ghost names 𝛾heap =

(𝛾mem, 𝛾blocksize, 𝛾globals, 𝛾stack). Each of the frames have an associated natural number index and tuple of

names as well, expressed through frameΓ , which is a tuple (N , 𝛾local, 𝛾domain, 𝛾alloca), keeping track of the

index and the name for the local environment, local domain, and frame-allocated addresses.

With these ingredients ready, we can define the logical heap interpretation.

heapCtx𝛾heap (𝜎) :=

∃𝑖 𝐹 , •(𝜎mem)
𝛾mem ∗ •(𝐹 )∗

𝛾blocksize ∗ ag(𝜎global)
𝛾global

∗ •(𝑖)
𝛾stack

∗ •(𝜎 local)
𝑖 localcurrent ∗ •(dom(𝜎 local))

𝑖domain
current ∗ •(peek 𝜎alloca)

𝑖allocacurrent

∗ ∗
(pop 𝑖,𝜎stack ) [𝑖 ] ↦→(𝑓 ,𝑒𝑛𝑣)

( •(𝑒𝑛𝑣)
𝑓 local

∗ •(dom(𝑒𝑛𝑣))
𝑓 domain

∗ •(𝜎 frame [𝑖 + 1])
𝑓 alloca

)

∗ allocSzRel(𝜎, 𝐹 ) ∗ stateWF(𝜎, 𝑖)

heapCtx asserts ownership of ghost states at all ghost names. It keeps track of each of the authoritative
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elements for the memory and allocation size control, and the resources at each frame. stateWf ensures that

the allocated blocks are also present in the memory block, and that there is no duplication of names in the

local environments. allocSzRel ensures that the physical allocation size agrees with what is recorded in the

ghost state. stateWF and allocSzRel have the following definitions:

stateWF(𝜎, 𝑖) :=NoDup(dom(𝜎 local)) ∗ NoDup(𝜎 frame) ∗ dom(𝜎mem) = 𝜎 frame

∗ |𝑖 | = |𝜎 frame | ∗ (∀𝑛, 𝑛 < |𝑖 | ⇒ 𝑖 [𝑛] index = |𝑖 | − 𝑛 − 1)
allocSzRel(𝜎, 𝐹 ) :=(∀𝑏 𝑜, (𝑏, 𝑜) ∈ 𝐹 ⇒ 𝑏 ∈ dom(𝜎mem)) ∗ (∀𝑏, 𝑏 ∈ dom(𝜎mem) ⇒ ∃𝑜, (𝑏, 𝑜) ∈ 𝐹 )

10.3 Bijection ghost state

10.3.1 Memory bijection

The ghost states for the source and target programs are instantiated using ghost names 𝛾 srcheap = (𝛾 srcmem,

𝛾 srcalloc, 𝛾
src
global) and 𝛾

tgt
heap = (𝛾 tgtmem, 𝛾

tgt
alloc, 𝛾

tgt
global). The logical assertions for Velliris programs are defined in

Figure 10.1.

Note that there is lifting of dynamic values to logical blocks through the ↑blk operator, as LLVM IR

instructions operate over typed values instead of their corresponding serialized bytes that would be stored to

memory. ↑blk is an operation that serializes a dynamic value to a list of bytes. There is also a corresponding

inverse operator ↓blk that deserializes a list of bytes to a dynamic value. The round trip property holds for

any given dynamic value, where ↓blk (↑blk 𝑣) = 𝑣 .

We maintain a bijection between the source and target blocks. The algebra used on blocks is a finite

bijection on blocks (the GsetBij algebra of Iris), with the ghost name 𝛾↔.

heapbij(𝐿,𝐶) := •(𝐿)
𝛾↔ ∗ ∗

(𝑏𝑡 ,𝑏𝑠 ) ∈𝐿
AllocRel(𝑏𝑡 , 𝑏𝑠 ,𝐶)

The bijection asserts that the blocks will have the same allocation state (i.e. they will be either allocated

with the same size on both source and target, or not be allocated). Additionally, it describes whether a pair

of locations that are in bijection are leaked to the public.
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Memory and global resources

ℓ𝑠
𝑞
↦→src [𝑏𝑠] := ◦[ℓ𝑠 ← (𝑞,𝑏𝑠)]

𝛾 srcmem

ℓ𝑠
𝑞
↦→src 𝑣𝑠 := ◦[ℓ𝑠 ← (𝑞, 𝑣↑blk𝑠 )]

𝛾 srcmem

ℓ𝑠 ↦→src 𝑣𝑠 := ℓ𝑠
1↦→src 𝑣𝑠

ℓ𝑠 ↦→src [𝑏𝑠] := ℓ𝑠
1↦→src [𝑏𝑠]

AllocSzsrc ℓ𝑠 𝑛 := ◦[ℓ𝑠 ← (1, some(𝑛))
𝛾 srcblocksize

Globalsrc 𝐴 := ag(𝐴)
𝛾 srcglobal

ℓ𝑡
𝑞
↦→tgt [𝑏𝑡 ] := ◦[ℓ𝑡 ← (𝑞,𝑏𝑡 )]

𝛾
tgt
mem

ℓ𝑡
𝑞
↦→tgt 𝑣𝑡 := ◦[ℓ𝑡 ← (𝑞, 𝑣↑blk𝑡 )]

𝛾
tgt
mem

ℓ𝑡 ↦→tgt 𝑣𝑡 := ℓ𝑡
1↦→tgt 𝑣𝑡

ℓ𝑡 ↦→tgt [𝑏𝑡 ] := ℓ𝑡
1↦→tgt [𝑏𝑡 ]

AllocSztgt ℓ𝑡 𝑛 := ◦[ℓ𝑡 ← (1, some(𝑛))
𝛾
tgt
blocksize

Globaltgt 𝐴 := ag(𝐴)
𝛾
tgt
global

Frame resources

Framesrc 𝑖 := ◦(𝑖)
𝛾 srcheap

[ℓ𝑠 := 𝑣𝑠]src 𝑖 := ◦[ℓ𝑠 ← (1, 𝑣𝑠)]
𝛾 srcheap, 𝑖

local
current

LocalDomain𝑖src 𝐿 := ag(𝐴)
𝛾 srcheap, 𝑖

domain
current

Alloca𝑖src 𝐴 := ◦(𝐴)
𝛾 srcheap, 𝑖

alloc
current

Frametgt 𝑖 := ◦(𝑖)
𝛾
tgt
heap

[ℓ𝑡 := 𝑣𝑡 ]tgt 𝑖 := ◦[ℓ𝑠 ← (1, 𝑣𝑡 )]
𝛾
tgt
heap, 𝑖

local
current

LocalDomain𝑖tgt 𝐿 := ag(𝐴)
𝛾
tgt
heap, 𝑖

domain
current

Alloca𝑖tgt 𝐴 := ◦(𝐴)
𝛾
tgt
heap, 𝑖

alloc
current

Figure 10.1: Bijection ghost state

AllocRel(ℓ𝑡 , ℓ𝑠 ,𝐶) :=

(AllocSzsrc ℓ𝑠 ⊥ ∗ AllocSztgt ℓ𝑡 ⊥) ∨
(∃ 𝑛,𝑏𝑠 , 𝑏𝑡 .AllocSzsrc ℓ𝑠 (some(𝑛)) ∗ AllocSztgt ℓ𝑡 (some(𝑛))∗
(((ℓ𝑡 , ℓ𝑠), some(1)) ∈ 𝐶) ∨
(((ℓ𝑡 , ℓ𝑠),⊥) ∈ 𝐶 ∗ ℓ𝑠 ↦→src [𝑏𝑠] ∗ ℓ𝑡 ↦→tgt [𝑏𝑡 ] ∗ V 𝑏𝑡 𝑏𝑠)

(∃𝑞, 𝑞 < 1 ∗ ((ℓ𝑡 , ℓ𝑠), some(𝑞)) ∈ 𝐶 ∗ ℓ𝑠
1−𝑞
↦→ src [𝑏𝑠] ∗ ℓ𝑡

1−𝑞
↦→ tgt [𝑏𝑡 ] ∗ V 𝑏𝑡 𝑏𝑠) ∨)

AllocRel includes extra case analysis on the fractional leaking of public resources. The bijection assertion

for locations is

(𝑏𝑡 , 𝑖𝑡 ) ↔ℎ (𝑏𝑠 , 𝑖𝑠) := ◦{(𝑏𝑡 , 𝑏𝑠)}
𝛾↔ ∗ 𝑖𝑡 = 𝑖𝑠

where the blocks are in bijection and the offsets are equal.
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10.4 State interpretation

We finally have all the definitions in place to define the state interpretation of Velliris.

S(𝜎𝑡 , 𝜎𝑠) := ∃𝐶, 𝑆.heapbij(𝐶, 𝑆) ∗ heapCtx𝛾 srcheap
(𝜎𝑠) ∗ heapCtx𝛾 tgtheap

(𝜎𝑡 ) ∗ •(𝐶)
checkedout

∗ globalBij

The state interpretation connects the ghost states to the physical resources 𝜎𝑡 and 𝜎𝑠 . It keeps track of the

current local and public locations, carrying around the authoritative view of VIR ghost resources. This state

interpretation is used to define the weakest pre-condition in Chapter 11, and this use of state interpretation

is typical of Iris Hoare triples.
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Chapter 11

Weakest-precondition Model and Adequacy

In this chapter, we explain the Iris model used to instantiate a simulation with Interaction Trees. The

coinductive machinery is akin to Simuliris and the parametric coinduction library ("paco") used in the ITree

library. However, we use these constructions of fixpoints to construct our Velliris simulation within the Iris

logic.

First, we give an introductory text on fixpoints, with standard definitions of a Knaster-Tarski least

and greatest fixpoint. This will be the necessary background to understand how to define greatest and

least fixpoints in the Iris logic. More precisely, the simulation defined for Interaction Trees is a mixed

least-greatest fixpoint, which uses parameterized coinduction instead of step-indexing to reason about

recursive programs.

11.1 Knaster-Tarski fixpoints in biIris

The Bunched Implication (BI) logic of Iris is an embedded logic within the type theory of Coq (a variant of

the Calculus of (co-)Inductive Constructions).

The Iris logic is a bunched logic, in that it is a substructural logic for reasoning about resources using

the separating conjuction(∗) and magic wand operator (−∗). This portion of the logic forms the resource

algebra for separation logic. A nicety of the logic is that modeling recursion is an orthogonal aspect: it is

typically constructed using a step-indexed logical relation defined over a small-step semantics. Because the

issue of modeling recursion is orthogonal to using the resource fragment of the logic, it is not necessary to

inherit both aspects to enjoy the benefits of the framework.

In fact, we use a different model of fixpoints over Interaction Trees in this setting, while inheriting the

resourceful fragment of the logic. In this section, we explain the least and greatest fixed point construction

that we use for our model.
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11.1.1 Least and greatest fixed point construction à la Knaster-Tarski

We can build least and greatest fixpoints, derived from the Knaster-Tarski theorem, in the Iris logic.

Propositions in the logic of Iris (biIris) form a complete lattice, in a analogous manner to how propositions

in Coq form a complete lattice. This fixed point construction is the one used in this dissertation, and we

compare it with the Banach construction in the next subsection.

11.1.1.1 Background: Least and greatest fixed points and the Knaster-Tarski Theorem

A complete lattice is a partially ordered set (L ,≤), where all subsets𝐴 ⊆ 𝐿 have a join (least upper bound) and

meet (greatest lower bound) defined. A monotone function 𝑓 ∈ 𝐿 → 𝐿 over this set is an order-preserving

function. Given a monotone function 𝑓 on 𝐿, a pre-fixed point of 𝑓 is a set 𝑟 ⊆ 𝐿 such that 𝑓 (𝑟 ) ≤ 𝑟 . A

post-fixed point of 𝑓 is a set 𝑟 ⊆ 𝐿 such that 𝑟 ≤ 𝑓 (𝑟 ). We denote 𝜇𝑓 for the least fixed point of 𝑓 , which

is the smallest pre-fixpoint of 𝑓 . Also, we use 𝜈 𝑓 for the greatest fixed point of 𝑓 , which is the greatest

post-fixpoint of 𝑓 . Knaster-Tarski’s theorem states that given a monotone function on a complete lattice,

there exists a unique least fixed point and greatest fixed point.

11.1.1.2 Knaster-Tarski fixpoint construction in biIris

Propositions in the logic of Iris (biIris) form a complete lattice within itself, with the following definition.

Definition 8. The set of affine biIris propositions iProp form a complete lattice with the following con-

struction. The ordering between two elements 𝑥 and 𝑦 of iProp is □(𝑥 −∗ 𝑦). The supremum of the set

𝐴 is
∨
𝐴 := ∃𝑎, (𝑎 ∈ 𝐴) ∗ 𝑎, (i.e. there exists some proposition in the set that holds), and the infimum is∧

𝐴 := ∀𝑎, (𝑎 ∈ 𝐴) −∗ 𝑎, (i.e. all propositions in the set hold). The cup is the ∨ operator and ∧ operator

defined in the logic, and the bottom and top element can be given as the ⊤ and ⊥ propositions that are

embedded from the Coq logic.

Given this complete lattice, a least and greatest fixpoint can be defined within the bi logic.

Definition 9. The least fixpoint 𝜇bi 𝑓 is ∀Φ, □(∀ 𝑥, 𝑓 Φ 𝑥 −∗ Φ 𝑥) −∗ Φ 𝑥 .

Definition 10. The greatest fixpoint 𝜈bi 𝑓 is ∃Φ,□(∀ 𝑥,Φ 𝑥 −∗ 𝑓 Φ 𝑥) ∗ Φ 𝑥 .
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We use these least and greatest fixpoint definitions in order to instantiate our mixed fixpoint simulation

in Section 11.2. In order to use this fixpoint construction, we define a new weakest precondition model of

Iris, which is a mixed least-greatest fixpoint simulation between two ITrees.

A noteworthy remark is that in this setting, we do not use the later modality in order to model recursion.

Essentially, using this Knaster-Tarski fixpoint, we can regard our logic as an "Iris light", Iris𝑙𝑖𝑔ℎ𝑡 (“Iris without

the step-indexing”), where we keep the basic logic of bunched implications [OP99] and the persistence

modality, but we ignore all the step-indexing aspects of Iris (e.g., the later modality , guarded recursion,

and impredicative invariants). Thus, we fix the step-index to be zero in this setting. Simuliris [GSS+22]

uses the same notion of fixpoints as this setting, and was the inspiration for using the Iris logic in our

setting. Another benefit of using Knaster-Tarski fixpoints is that there are well-developed proof techniques

for coinductive simulations (which are by definition over Knaster-Tarski fixpoints), such as parameterized

coinduction.

11.1.2 Remark: Guarded fixed point construction à la Banach: step-indexed logics and

the later modality

We make a brief remark regarding the Knaster-Tarski fixpoint and the fixpoint construction typically used

within the Iris logic. The fixpoint construction in the Iris logic, which is used for the standard weakest

precondition model is the fixpoint derived from the Banach fixed point theorem. This technique allows

users of Iris to define a program semantics as a small-step relation, and then reason about recursion and

higher-order state using a step modality.

The standard carrier type of the Iris logic is an ordered family of equivalences (o.f.e.’s). similarly

presented as the construction by Di Gianantonio and Miculan [GM02]. It is possible to define fixpoints over

complete ordered family of equivalences, where a fixpoint may be given by Banach’s Theorem. The fixpoint

generated à la Banach will introduce step-indexing modalities into the equation, which would introduce

extra bureaucracy to keep track of in the midst of coinductive proofs.
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11.2 Simulation Relation

The Velliris simulation allows us to prove various refinements over programs correct inside a separation

logic. We first see how the relational Hoare quadruples are defined in this section, and then we give an idea

of the key lemma that enables the adequacy proof of the logical relation in Section 11.3. The definitions

are defined in a language-generic way, and specifically for an arbitrary Interaction Tree given a stateful

interpretation, such that the proof effort does not need to be repeated.

The simulation relation {𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝑄} is at the core of Velliris. Velliris simulations defined inside a

separation logic, and specifically in Iris𝑙𝑖𝑔ℎ𝑡 , as described above.

In the style of Iris weakest preconditions, the Velliris simulation is defined as:

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝑄} := □(𝑃 −∗ sim 𝑒𝑡 𝑒𝑠 𝑄
↑)

where sim 𝑒𝑡 𝑒𝑠 𝑄) is the weakest precondition that we need to impose such that 𝑒𝑠 simulates 𝑒𝑡 with

postcondition 𝑄 . The persistence modality □ ensures that the simulation relation is duplicable (i.e. the fact

that 𝑒𝑠 simulates 𝑒𝑡 can be used arbitrarily many times). We define two variants of hoare triples using sim

𝑒𝑡 ⪯ 𝑒𝑠 [𝑄] := sim 𝑒𝑡 𝑒𝑠 𝑄 , where 𝑄 is a relation over ITrees and 𝑒𝑡 ⪯ 𝑒𝑠 {𝑄} := sim 𝑒𝑡 𝑒𝑠 𝑄
↑, where 𝑄 is a

relation over returned values. The ↑ is a lifting that lifts a relation over values to a relation over ITrees:

𝑄↑ (𝑡, 𝑠) := ∃ 𝜎𝑡 , 𝜎𝑠 , 𝑣𝑡 , 𝑣𝑠 .𝑡 = ret (𝜎𝑡 , 𝑣𝑡 ) ∗ 𝑠 = ret (𝜎𝑠 , 𝑣𝑠) ∗ S(𝜎𝑡 , 𝜎𝑠) ∗𝑄 (𝑣𝑡 , 𝑣𝑠).

To write Hoare triples, we use the lifted relation 𝑒𝑡 ⪯ 𝑒𝑠 {𝑄} with 𝑄 as a relation over returned values.

The relation 𝑒𝑡 ⪯ 𝑒𝑠 [𝑄] is useful for writing coinductive proofs, as we’ll describe some of its properties in

Section 11.2.4.

11.2.1 Velliris model: sim definition

In this subsection, we give the definition of the sim simulation that at the core of Velliris Hoare triples.

sim is a stateful simulation over programs that maintains a stateful invariant at each lock-step of the

simulation.

sim 𝑒𝑡 𝑒𝑠 𝑄 := ∀ 𝜎𝑡 , 𝜎𝑠 . S(𝜎𝑡 , 𝜎𝑠) |⇛ isim 𝑄 (⟦𝑒𝑡⟧ 𝜎𝑡 ) (⟦𝑒𝑠⟧ 𝜎𝑠)
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Intuitively, this definition says that given two states 𝜎𝑡 and 𝜎𝑠 that satisfy a state invariant S, the

interpretation of 𝑒𝑡 and 𝑒𝑠 with initial states 𝜎𝑡 and 𝜎𝑠 will maintain the inner simulation relation isim with

the postcondition 𝑄 . The inner simmulation relation isim is a mixed least-greatest fixpoint over ITrees that

we will discuss in the next subsection.

𝑒𝑡 and 𝑒𝑠 are ITrees at layer 𝐿0 (i.e. 𝑒𝑡 and 𝑒𝑠 are of type itree 𝐿0 𝑅1 and itree 𝐿0 𝑅2). The function

⟦−⟧ : itree 𝐿0 𝑅 → stateT𝑆 (itree 𝐿2) 𝑅 is a stateful interpretation function that interprets all stateful events

in layer 𝐿0. We remind the readers the definition of a state transformer applied to an itree 𝐸, which is a

state-threading function, where stateT𝑆 (itree 𝐸) := 𝑆 → itree 𝐸 (𝑆 × 𝑅).

The relation S : state→ state→ iProp (iProp being a proposition residing in the Iris𝑙𝑖𝑔ℎ𝑡 logic) is the

state invariant relation that is maintained at each step of the simulation. More precisely, the sim relation

requires that, given two states that maintain the state invariant S(𝜎𝑡 , 𝜎𝑠), the interpretation of 𝑒𝑡 and 𝑒𝑠

will maintain the simulation relation isim. The definition of the simulation is parameterized both by the

interpretation function ⟦−⟧ and state invariant relation S, so the user is free to choose its definition when

instantiating the simulation for a given language.

The concrete definition of the state interpretation invariant for Velliris (SVIR), which is specific to the

VIR language, is given in Chapter 10 when we discuss the ghost theory of Velliris.

11.2.2 isim definition

We define the internal simulation relation isim over a stateful program that returns a state and a value. In

order to define the isim, we need to define a functor isimF that we will take the mixed least-greatest fixpoint

over. The definition of isimF is given in Figure 11.1.

The internal simulation functor isimF is a function that takes as argument a function for defining its

greatest fixpoint (G), a function for defining its least fixpoint (L), a postcondition for expressions (Φ), and a

source and target expression (𝑠𝑡 , 𝑠𝑠 ). In general, there are eight cases to consider for the simulation: the

base step case, visible step case, locking silent step case, the two stutter cases, the source UB case, the source

error case, and the mismatched case.

The base case is where the postcondition can be satisfied by the current state of the program, and we

can conclude by stating the postcondition Φ. In the visible step case, the greatest fixpoint G is called on all
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isimF G L Φ 𝑠𝑡 𝑠𝑠 ≜

|⇛ Φ 𝑠𝑡 𝑠𝑠 base step

∨ ((𝑠𝑡 = vis call(ft, argst, attrt) 𝑘𝑡 ) ∗ (𝑠𝑠 = vis call(fs, argss, attrs) 𝑘𝑠) ∗ call spec step

(∃𝐶. S(𝜎𝑡 , 𝜎𝑠) ∗ C𝐶ev(𝑓𝑡 , 𝑎𝑟𝑔𝑠𝑡 , 𝑎𝑡𝑡𝑟𝑡 , 𝑓𝑠 , 𝑎𝑟𝑔𝑠𝑠 , 𝑎𝑡𝑡𝑟𝑠) ∗
(∀𝑣𝑡 .𝑣𝑠 ,S(𝜋1(𝑣𝑡 ), 𝜋1(𝑣𝑠)) ∗ C𝐶ans(𝑎𝑟𝑔𝑠𝑡 , 𝑎𝑡𝑡𝑟𝑡 , 𝑎𝑟𝑔𝑠𝑠 , 𝑎𝑡𝑡𝑟𝑠 , 𝜋2(𝑣𝑡 ), 𝜋2(𝑣𝑡 ))
−∗ |⇛ G(𝑘𝑡 𝑣𝑡 , 𝑘𝑠 𝑣𝑠))) ∨

(∃𝐶. S(𝜎𝑡 , 𝜎𝑠) ∗
−→V𝐶 (argst, argss) ∗ call lock step

(∀𝑣𝑡 .𝑣𝑠 ,S(𝜋1(𝑣𝑡 ), 𝜋1(𝑣𝑠)) ∗
−→V𝐶 (𝜋2(𝑣𝑡 ), 𝜋2(𝑣𝑡 ))

−∗ |⇛ G(𝑘𝑡 𝑣𝑡 , 𝑘𝑠 𝑣𝑠))))
∨ ((𝑠𝑡 = vis 𝑒𝑣𝑡 𝑘𝑡 ) ∗ (𝑠𝑠 = vis 𝑒𝑣𝑠 𝑘𝑠) ∗ visible step

𝑒𝑡 = 𝑒𝑠 ∗ (∀𝑣𝑡 , 𝑣𝑠 .𝑣𝑡 = 𝑣𝑠 −∗ |⇛ G(𝑘𝑡 𝑣𝑡 , 𝑘𝑠 𝑣𝑠))
∨ ((𝑠𝑡 = tau 𝑡𝑡 ) ∗ L Φ 𝑡𝑡 𝑠𝑠 stutter step (target)
∨ ((𝑠𝑠 = tau 𝑡𝑠) ∗ L Φ 𝑡𝑡 𝑠𝑠 stutter step (source)
∨ ((𝑠𝑡 = tau 𝑡𝑡 ) ∗ (𝑠𝑠 = tau 𝑡𝑠) ∗ G Φ 𝑡𝑡 𝑠𝑠 locking silent step

∨ (𝑠𝑠 = Exc) ∨ (𝑠𝑠 = UB) source error/UB

Figure 11.1: isimF definition

configurations satisfying the appropriate invariants for events (C is the external call invariant, while E is

the non-state-affecting events invariant). The locking silent step case is where there is a silent (Tau) step on

both computations, and where we peel off the silent steps in lock-step and call the greatest fixpoint. The

stutter case is where a silent step can be ignored for either the source or target computation. The source UB

case and error cases are when there is an undefined behavior (UB) or error in the source program, so the

simulation holds trivially. For all other cases, the source and target programs are out of sync (mismatched),

and thus not in simulation.

isim is defined by forming a mixed greatest-least fixpoint using the Knaster-Tarski construction we

presented in Section 11.1.1.2.

isim Φ 𝑒𝑡 𝑒𝑠 := 𝜈bi(𝜇bi(isimF))
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11.2.3 Memory attribute logical interpretation

In this section, we discuss the logical interpretation of memory attribute, as used in the call cases described

in Section 11.2.2. The event predicate Cev and answer predicate Cans are defined as follows.

Definition 11. The event predicate C𝐶ev(𝑓𝑡 , 𝑎𝑟𝑔𝑠𝑡 , 𝑎𝑡𝑡𝑟𝑡 , 𝑓𝑠 , 𝑎𝑟𝑔𝑠𝑠 , 𝑎𝑡𝑡𝑟𝑠) is defined as
−→V(args𝑡 , args𝑠)∗V(𝑓𝑡 , 𝑓𝑠)∗

𝑎𝑡𝑡𝑟𝑡 = 𝑎𝑡𝑡𝑟𝑠 ∗ checkout(𝐶) ∗ attrib_interp(𝑎𝑟𝑔𝑠𝑡 , 𝑎𝑟𝑔𝑠𝑠 , 𝑎𝑡𝑡𝑟𝑡 ,𝐶).

The answer predicate C𝐶ans(𝑎𝑟𝑔𝑠𝑡 , 𝑎𝑡𝑡𝑟𝑡 , 𝑎𝑟𝑔𝑠𝑠 , 𝑎𝑡𝑡𝑟𝑠 , 𝑣𝑡 , 𝑣𝑠) is defined asV(𝑣𝑡 , 𝑣𝑠)∗𝑎𝑡𝑡𝑟𝑡 = 𝑎𝑡𝑡𝑟𝑠∗checkout(𝐶)∗

attrib_interp(𝑎𝑟𝑔𝑠𝑡 , 𝑎𝑟𝑔𝑠𝑠 , 𝑎𝑡𝑡𝑟𝑡 ,𝐶).

With these definitions in place, we provide the logical interpretation for memory attributes below.

Attribute Logical interpretation for arguments (𝑎𝑡 , 𝑎𝑠 ) and checkout set C

Nothing 𝐶 = ∅

readonly ∀(ℓ𝑡 , ℓ𝑠 ) ∈ 𝐶,𝐶 (ℓ𝑡 , ℓ𝑠 ) = 𝑞 ∧ 𝑞 < 1

argmemonly ∀(ℓ𝑡 , ℓ𝑠 ) ∈ zip 𝑎𝑡 𝑎𝑠 , (ℓ𝑡 , ℓ𝑠 ) ∉ 𝐶

argmemonly, readonly ∀(ℓ𝑡 , ℓ𝑠 ) ∈ zip 𝑎𝑡 𝑎𝑠 , ∃𝑞,𝐶 (ℓ𝑡 , ℓ𝑠 ) = 𝑞 ∧ 𝑞 < 1

The logical specifications are externally equivalent to the attribute specifications in LLVM IR. From the

perspective of the caller, the readonly function reads resources that are visible only from the caller. Because

of this, if the callee had read any resources that is not visible from the caller, the reasoning principles

should not change from the caller’s perspective. From a program transformation perspective, the readonly

specification that it does not read from any region of memory is unnecessarily strong, because local

reads that is not externally observable should not affect the external environment. The nop function (i.e.

function with no effect) vacuously satisfies all logical specifications. Figure 11.2 show minimal examples of

functions which satisfy their attributes. We have proved that the examples in figure 11.2 satisfy our logical

specification, which demonstrates a proof of existence for functions which satisfy these specifications.

11.2.4 sim rules

The main proof rules of the simulation 𝑒𝑡 ⪯ 𝑒𝑠 {Φ} are described in Figure 11.3. Most of these rules

are reminiscent of standard relational hoare logics for monadic programs. The simulation is monotonic

(SimMono), and also monotonic under the fancy update operator (SimBupdMono). The cut principle
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define void @ex1() readonly {
%l = alloca i32
%1 = load i32, i32* %0

}

define void @ex2(i32 %l) argmemonly readonly {
%1 = load i32, i32* %l

}

define void @ex2(i32 %l) argmemonly {
store i32 42, i32* %l

}

Figure 11.2: Example functions that satisfy their logical attributes

holds for the bind operator (SimBind), and the inversion rules for fmap and ret. These rules as proven as

lemmas and are properties that hold for the simulation; for the complete set of rules and proofs, refer to the

mechanization.

Coinductive reasoning. While the triple 𝑒𝑡 ⪯ 𝑒𝑠 {Φ} is useful for stating postconditions about returned

values, we have a variant 𝑒𝑡 ⪯ 𝑒𝑠 [ Φ ] which states a postcondition about whole computations. It is defined

as 𝑒𝑡 ⪯ 𝑒𝑠 [ Φ ] := □(𝑃 −∗ sim 𝑒𝑡 𝑒𝑠 𝑄). This triple does not have the lifting (↑) over the postcondition,

which means that the postcondition is over programs, not values. This is especially useful for accumulating

information in coinductive proofs.

Figure 11.4 contains the proof rules pertaining to coinduction. Most notably, the SimIter rule allows

reasoning about the iteration combinator (iter). The user of this rule can simply prove that a relational loop

invariant 𝐹 will be preserved by the loop body without explicit coinduction.

Language-specific mutual recursion principle. The mutual recursion principle law is shown in Figure

11.5, where it states that a mutually recursive function over the body 𝑓 and 𝑔 with initial values 𝑥 and 𝑦

can be shown equivalent if an invariant 𝐹 is preserved over the function bodies. The proof of the mutual

recursion law involves coinductive proof of language-specific inversion laws over interpreted results of a

given expression.
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Φ(ret 𝑣𝑡 , ret 𝑣𝑠)
𝑣𝑡 ⪯ 𝑣𝑠 {Φ}

SimBase
∀ 𝑒𝑡 , 𝑒𝑠 .Φ(𝑒𝑡 , 𝑒𝑠) −∗ Φ′(𝑒𝑡 , 𝑒𝑠) 𝑒𝑡 ⪯ 𝑒𝑠 {Φ}

𝑒𝑡 ⪯ 𝑒𝑠 {Φ′}
SimMono

𝑒𝑡 ⪯ 𝑒𝑠 {Ψ} ∀𝑣𝑡 𝑣𝑠 . (𝑘𝑡 𝑥) ⪯ (𝑘𝑠 𝑥) {Φ}
(𝑥 ← 𝑒𝑡 ; ; 𝑘𝑡 𝑥) ⪯ (𝑥 ← 𝑒𝑠 ; ; 𝑘𝑠 𝑥) {Φ}

SimBind

∀ 𝑒𝑡 , 𝑒𝑠 .Φ(𝑒𝑡 , 𝑒𝑠) −∗ |⇛ Φ′(𝑒𝑡 , 𝑒𝑠) 𝑒𝑡 ⪯ 𝑒𝑠 {Φ}
|⇛ 𝑒𝑡 ⪯ 𝑒𝑠 {Φ′}

SimBupdMono

𝑒𝑡 ⪯ 𝑒𝑠 {Φ}
(tau 𝑒𝑡 ) ⪯ (tau 𝑒𝑠) {Φ′}

SimTau
𝑒𝑡 ⪯ 𝑒𝑠 {Φ}

(tau 𝑒𝑡 ) ⪯ 𝑒𝑠 {Φ′}
SimTauL

𝑒𝑡 ⪯ 𝑒𝑠 {Φ}
𝑒𝑡 ⪯ (tau 𝑒𝑠) {Φ′}

SimTauR

Φ(vis 𝑒𝑣𝑡 𝑘𝑡 , vis 𝑒𝑣𝑠 𝑘𝑠) ∨ (handle_event (sim Φ)𝑘𝑡 𝑘𝑠 𝑒𝑣𝑡 𝑒𝑣𝑠)
(vis 𝑒𝑣𝑡 𝑘𝑡 ) ⪯ (vis 𝑒𝑣𝑠 𝑘𝑠) {Φ}

SimVis
𝑒𝑡 ⪯ Exc {Φ′} SimExc

(fmap f 𝑒𝑡 ) ⪯ (fmap g 𝑒𝑠) {Φ}
𝑒𝑡 ⪯ 𝑒𝑠 {(bimap 𝑓 𝑔 Φ′)} SimFmapInv

(ret 𝑣𝑡 ) ⪯ (ret 𝑣𝑠) {Φ}
S(𝜋1 𝑣𝑡 , 𝜋1 𝑣𝑠) ∗ Φ(𝜋2 𝑣𝑡 , 𝜋2 𝑣𝑠)

SimRetInv

Figure 11.3: Basic proof rules for simulation

11.3 Adequacy

With the model in place, we can state our main results on adequacy. We define a whole-program relation

𝑝𝑡 ⪯ 𝑝𝑠 in the Iris logic implies whole-program refinement in the Coq logic. The whole-program relation

𝑝𝑡 ⪯ 𝑝𝑠 := 𝑝𝑡 ⪯ 𝑝𝑠 {V} is a relation over two programs with the value relationV as the postcondition.

Theorem 2 (Adequacy). Given programs 𝑝𝑡 (target) and 𝑝𝑠 (source) that are closed, if the source program

program is well-behaved (i.e. does not throw an exception), then if S(𝜎𝑡 , 𝜎𝑠) ∗ 𝑝𝑡 ⪯ 𝑝𝑠 , then ⟦𝑝𝑡⟧𝜎𝑡 ≈V

⟦𝑝𝑠⟧𝜎𝑠 .

The adequacy theorem states that for well-behaved source programs, and the whole-program relation

holds for sim in the Iris logic along with a state interpretation holding for initial states 𝜎𝑡 and 𝜎𝑠 , the relation

⟦𝑝𝑡⟧𝜎𝑡 ≈V ⟦𝑝𝑠⟧𝜎𝑠 holds in the meta logic.
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𝑒𝑡 ⪯ 𝑒𝑠 {Φ}
𝑒𝑡 ⪯ 𝑒𝑠 [ Φ ]

SimLift
𝑒𝑡 ⪯ 𝑒𝑠 [ Φ↑ ]
𝑒𝑡 ⪯ 𝑒𝑠 {Φ}

SimRet

□(∀Φ, 𝑒𝑡 , 𝑒𝑠 .𝐹 Φ 𝑒𝑡 𝑒𝑠 −∗ (𝑒𝑡 = tau 𝑒′𝑡 ∗ 𝑒𝑠 = tau 𝑒𝑠 ∗ 𝑒′𝑡 ⪯ 𝑒′𝑠 {((𝐹 Φ) ∨2 Φ))} ∨
(𝑒𝑡 = vis 𝑒𝑣𝑡 𝑘𝑡 ∗ 𝑒𝑠 = vis 𝑒𝑣𝑠 𝑘𝑠 ∗ handleEvent (isim ((𝐹 Φ) ∨2 Φ)) 𝑘𝑡 𝑘𝑠 𝑒𝑣𝑡 𝑒𝑣𝑠))

𝐹 Φ 𝑒𝑡 𝑒𝑠 −∗ 𝑒𝑡 ⪯ 𝑒𝑠 [ Φ ]
SimPaco

𝐹 𝑖𝑡 𝑖𝑠
□(∀𝑖𝑡 , 𝑖𝑠 . 𝐹 𝑖𝑡 𝑖𝑠 −∗

𝑓𝑡 𝑖𝑡 ⪯ 𝑓𝑠 𝑖𝑠 [ 𝜆𝑒𝑡 , 𝑒𝑠 .
(∃𝑟𝑡 , 𝑟𝑠 .𝑒𝑡 = ret (inl 𝑟𝑡 ) ∗ 𝑒𝑠 = ret (inl 𝑟𝑠) ∗ 𝐹 𝑖𝑡 𝑖𝑠)
∨(∃𝑟𝑡 , 𝑟𝑠 .𝑒𝑡 = ret (inr 𝑟𝑡 ) ∗ 𝑒𝑠 = ret (inr 𝑟𝑠) ∗ Φ 𝑒𝑡 𝑒𝑠) ])

iter(𝑓𝑡 , 𝑖𝑡 ) ⪯ iter(𝑓𝑠 , 𝑖𝑠) [ Φ ]
SimIter

Figure 11.4: Parameterized coinduction with isim

𝐹 𝑖𝑡 𝑖𝑠 □(∀𝑖𝑡 , 𝑖𝑠 . 𝐹 𝑖𝑡 𝑖𝑠 −∗ 𝑥 ⪯ 𝑦 [ 𝜆𝑒𝑡 , 𝑒𝑠 . Φ 𝑥 𝑦 ∗ 𝐹 𝑖𝑡 𝑖𝑠 ])
□(∀𝑖𝑡 , 𝑖𝑠 .

−→V(args𝑡 , args𝑠) ∗ V(𝑓𝑡 , 𝑓𝑠) −∗ 𝑓 (CallV𝑢 (𝑓𝑡 , args𝑡 )) ⪯ 𝑔 (CallV𝑢 (𝑓𝑠 , args𝑠)) [ V ])
interp_mrec 𝑓 𝑥 ⪯ interp_mrec 𝑔 𝑦 [ Φ ]

Figure 11.5: Mutual recursion law

11.4 Contextual refinement

Contextual refinement ensures a compiler can replace the expression 𝑒𝑠—which may be open—with the

specified expression 𝑒𝑡 . In this section, we define the contextual refinement for Velliris, and demonstrate

how it can be proved using the simulation relation. We first introduce the notion of contextual refinement

in Section 11.4.1, introduce the coinductive reasoning principles that are necessary to prove the contextual

refinement result 9.4.

11.4.1 Contextual Refinement

The program context in VIR is a mutually recursive control flow graph with a hole at an arbitrary place.

The context 𝐶 [−] consists of the (possibly open) mutually recursive control flow graph 𝐶 , with a hole that

takes in a (possibly open) function definition, which may be referred to by 𝐶 and also can call functions in

𝐶 .

Definition 12 (Contextual refinement). 𝑒𝑡 ⊑ctx 𝑒𝑠 := ∀𝐶,wf 𝐶 ∧ wfprog (⟦𝐶 [𝑒𝑡 ]⟧𝜎𝑡 ) (⟦𝐶 [𝑒𝑠]⟧𝜎𝑠) ⇒
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(⟦𝐶 [𝑒𝑡 ]⟧𝜎𝑡 ) ≈V↓ (⟦𝐶 [𝑒𝑠]⟧𝜎𝑠).

The well-formedness condition over programs (wf) states that the source program does not go wrong,

and that the program composed with the context (⟦𝐶 [𝑒]⟧𝜎) is closed. Our main result for contextual

refinement, contextual adequacy, is as follows.

Theorem 3 (Contextual adequacy). Given 𝑒𝑡 ⪯fun
log 𝑒𝑠 , then 𝑒𝑡 ⊑ctx 𝑒𝑠 .

The result of contextual adequacy allows us to lift results about open function calls in the Velliris

logic to a closing context in the Coq logic. In order to prove the contextual adequacy, we need two more

components: a logical relation, and coinductive reasoning principles to prove theorems about whole programs

and (mutually-recursive) control flow graphs.

11.4.2 Logical Relation

We use the standard technique for proving contextual refinements by using logical relations. Because the

syntax of VIR involves various constructs, we must define a logical relation for each construct. We prove a

fundamental theorem result, where we define a logical relation for each syntactic VIR construct and show

that each relation so defined is reflexive.

The invariant for the logical relation is defined in Figure 11.6, which states the invariant for ghost

resources across a control flow graph. It states that (1) there is some local domain in both the source and

target program so that they are pointwise related, (2) the frame index is maintained, and (3) the locally

allocated set is not leaked as a public location (i.e. is not included in the checked-out set).

The definitions of the logical relations are given in Figure 11.7 and 11.8. Figure 11.7 show the logical

relations for expressions, terminators, instructions, phi nodes, code, block, and (open) control flow graphs.

Expressions, terminators, and phi nodes should not affect the domain of stack-allocated resources, whereas

code, block, and (open) control flow graphs increase the allocated set of locations monotonically.

135



Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) := ∃args𝑡 , args𝑠 . LocalDomain𝑖𝑡tgt (
−→𝜋1(𝑎𝑟𝑔𝑠𝑡 )) ∗ LocalDomain𝑖𝑠src (−→𝜋1(𝑎𝑟𝑔𝑠𝑠))

Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ Alloca𝑖𝑡tgt 𝐴𝑡 ∗ Alloca𝑖𝑠src 𝐴𝑠 ∗ checkout(𝐶)∗

( ∗
(𝑙𝑡 ,𝑣𝑡 ) ;(𝑙𝑠 ,𝑣𝑠 ) ∈𝑎𝑟𝑔𝑠𝑡 ;𝑎𝑟𝑔𝑠𝑠

[ 𝑙𝑡 := 𝑣𝑡 ]𝑖𝑡 ∗ [ 𝑙𝑠 := 𝑣𝑠 ]𝑖𝑠 ∗ 𝑙𝑡 = 𝑙𝑠 ∗ VU(𝑣𝑡 , 𝑣𝑠))∗

( ∗
𝑣𝑡 ;𝑣𝑠 ∈𝐴𝑡 ,𝐴𝑠

VU(𝑣𝑡 , 𝑣𝑠) ∗ (𝑣𝑡 , 𝑣𝑠) ∉ 𝐶)

Figure 11.6: Invariant for Velliris logical relation

𝑒𝑡 ⪯exp
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝑒𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝑒𝑡⟧

↑exp
expr ⪯ ⟦𝑒𝑠⟧

↑exp
expr {𝜆𝑣𝑡 , 𝑣𝑠 .VU(𝑣𝑡 , 𝑣𝑠) ∗ Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) }

𝑡𝑡 ⪯term
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝑡𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝑡𝑡⟧

↑exp
term ⪯ ⟦𝑡𝑠⟧

↑exp
term

{𝜆𝑣𝑡 , 𝑣𝑠 . ((∃𝑏𝑡 , 𝑏𝑠 .𝑣𝑡 = inl 𝑏𝑡 ∗ 𝑣𝑠 = inl 𝑏𝑠 ∗ 𝑏𝑡 = 𝑏𝑠)∨
(∃𝑏𝑡 , 𝑏𝑠 .𝑣𝑡 = inr 𝑏𝑡 ∗ 𝑣𝑠 = inr 𝑏𝑠 ∗ VU(𝑏𝑡 , 𝑏𝑠)) ∗ Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) }

𝜄𝑡 ⪯instr
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝜄𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝜄𝑡⟧

↑instr
instr ⪯ ⟦𝜄𝑠⟧

↑instr
instr {∃𝐴

′
𝑡 , 𝐴
′
𝑠 .Inv

(𝑖𝑡 ,𝑖𝑠 )
(𝐶,𝐴𝑡@𝐴′𝑡 ,𝐴𝑠@𝐴′𝑠 )

}

𝜙𝑡 ⪯phi
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝜙𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝜙𝑡⟧

↑instr
𝜙
⪯ ⟦𝜙𝑠⟧↑instr𝜙

{𝜆′(𝑙𝑡 , 𝑣𝑡 ),′ (𝑙𝑠 , 𝑣𝑠) . 𝑙𝑡 = 𝑙𝑠 ∗ VU(𝑣𝑡 , 𝑣𝑠) ∗ Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) }

Φ𝑡 ⪯phis
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) Φ𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦Φ𝑡⟧↑instrΦ ⪯ ⟦Φ𝑠⟧↑instrΦ

{𝜆′(𝑙𝑡 , 𝑣𝑡 ),′ (𝑙𝑠 , 𝑣𝑠) .𝑙𝑡 = 𝑙𝑠 ∗ VU(𝑣𝑡 , 𝑣𝑠) ∗ Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) }

𝑐𝑡 ⪯code
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝑐𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝑐𝑡⟧

↑instr
𝑐𝑜𝑑𝑒
⪯ ⟦𝑐𝑠⟧↑instr𝑐𝑜𝑑𝑒

{∃𝐴′𝑡 , 𝐴′𝑠 .Inv
(𝑖𝑡 ,𝑖𝑠 )
(𝐶,𝐴𝑡@𝐴′𝑡 ,𝐴𝑠@𝐴′𝑠 )

}

𝑏𝑡 ⪯blk
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝑏𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝑏𝑡⟧

↑instr
𝑏𝑙𝑘
⪯ ⟦𝑏𝑠⟧↑instr𝑏𝑙𝑘

{𝜆𝑣𝑡 , 𝑣𝑠 . ((∃𝑏𝑡 , 𝑏𝑠 .𝑣𝑡 = inl 𝑏𝑡 ∗ 𝑣𝑠 = inl 𝑏𝑠 ∗ 𝑏𝑡 = 𝑏𝑠)∨
(∃𝑏𝑡 , 𝑏𝑠 .𝑣𝑡 = inr 𝑏𝑡 ∗ 𝑣𝑠 = inr 𝑏𝑠 ∗ VU(𝑏𝑡 , 𝑏𝑠))∗
∃𝐴′𝑡 , 𝐴′𝑠 .Inv

(𝑖𝑡 ,𝑖𝑠 )
(𝐶,𝐴𝑡@𝐴′𝑡 ,𝐴𝑠@𝐴′𝑠 )

}

𝑜𝑡 ⪯ocfg
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝑜𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝑜𝑡⟧

↑instr
𝑜𝑐 𝑓 𝑔
⪯ ⟦𝑜𝑠⟧↑instr𝑜𝑐 𝑓 𝑔

{𝜆𝑣𝑡 , 𝑣𝑠 . ((∃𝑖𝑑𝑡 , 𝑖𝑑𝑠 .𝑣𝑡 = inl 𝑖𝑑𝑡 ∗ 𝑣𝑠 = inl 𝑖𝑑𝑠 ∗ 𝑖𝑑𝑡 = 𝑖𝑑𝑠)∨
(∃𝑏𝑡 , 𝑏𝑠 .𝑣𝑡 = inr 𝑏𝑡 ∗ 𝑣𝑠 = inr 𝑏𝑠 ∗ VU(𝑏𝑡 , 𝑏𝑠))∗
∃𝐴′𝑡 , 𝐴′𝑠 .Inv

(𝑖𝑡 ,𝑖𝑠 )
(𝐶,𝐴𝑡@𝐴′𝑡 ,𝐴𝑠@𝐴′𝑠 )

}

Figure 11.7: Logical relations for Velliris
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𝑐𝑡 ⪯cfg
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝑐𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . Inv(𝑖𝑡 ,𝑖𝑠 )(𝐶,𝐴𝑡 ,𝐴𝑠 ) −∗ ⟦𝑐𝑡⟧

↑instr
𝑐 𝑓 𝑔
⪯ ⟦𝑐𝑠⟧↑instr𝑐 𝑓 𝑔

{𝜆𝑣𝑡 , 𝑣𝑠 . VU(𝑣𝑡 , 𝑣𝑠) ∗ ∃𝐴′𝑡 , 𝐴′𝑠 .Inv
(𝑖𝑡 ,𝑖𝑠 )
(𝐶,𝐴𝑡@𝐴′𝑡 ,𝐴𝑠@𝐴′𝑠 )

}

𝑓𝑡 ⪯fun
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝑓𝑠 := ∀𝑖𝑡 , 𝑖𝑠 . ( |𝑖𝑠 | > 0→ |𝑖𝑡 | > 0)∗

Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ checkout(𝐶) ∗ ( ∗
𝑣𝑡 ,𝑣𝑠 ∈𝑎𝑟𝑔𝑠𝑡 ,𝑎𝑟𝑔𝑠𝑠

VU(𝑣𝑡 , 𝑣𝑠)) −∗

⟦𝑓𝑡⟧↑instr𝑓 𝑢𝑛
⪯ ⟦𝑓𝑠⟧↑instr𝑓 𝑢𝑛

{𝜆𝑣𝑡 , 𝑣𝑠 . VU(𝑣𝑡 , 𝑣𝑠) ∗ Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ checkout(𝐶)}

𝐹𝑡 ⪯funs
log (𝐴𝑡 ,𝐴𝑠 ,𝐶 ) 𝐹𝑠 := ∀𝑖, 𝑖𝑡 , 𝑖𝑠 , 𝑎𝑡 , 𝑓𝑡 , 𝑎𝑠 , 𝑓𝑠 .( |𝑖𝑠 | > 0→ |𝑖𝑡 | > 0)∗

𝐹𝑡 [𝑖] = (𝑎𝑡 , 𝑓𝑡 ) ∗ 𝐹𝑠 [𝑖] = (𝑎𝑠 , 𝑓𝑠) ∗ VDyn(𝑎𝑡 , 𝑎𝑠) ∗ Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠∗

checkout(𝐶) ∗ ( ∗
𝑣𝑡 ,𝑣𝑠 ∈𝑎𝑟𝑔𝑠𝑡 ,𝑎𝑟𝑔𝑠𝑠

VU(𝑣𝑡 , 𝑣𝑠)) −∗

⟦𝑓𝑡⟧↑instr𝑓 𝑢𝑛
⪯ ⟦𝑓𝑠⟧↑instr𝑓 𝑢𝑛

{𝜆𝑣𝑡 , 𝑣𝑠 . VU(𝑣𝑡 , 𝑣𝑠) ∗ Frametgt 𝑖𝑡 ∗ Framesrc 𝑖𝑠 ∗ checkout(𝐶)}

Figure 11.8: Logical relations for Velliris, continued.

Figure 11.8 show the logical relations for functions and list of function definitions. Any stack-allocated

and local resource is available only at the scope of the control flow graph, and thus the logical relation

invariant is not relevant for functions and function definitions. Refer to Section 3.3 for the denotation of

each syntactic construct in VIR.

Theorem 4 (Fundamental Theorem). For any well-formed function definitions 𝐹 , 𝐹 ⪯funs
log (𝐴𝑡 ,𝐴𝑠 ,∅) 𝐹 .

Proof. Each of the logical relations for syntactic constructs must be proved. 1. Expression: follows by

case analysis; the cases for Struct and Array follow by induction. 2. Terminator: follows by case analysis.

3. Instruction: follows by reflexivity of concretized expressions in a deterministic setting, along with the

invariants being preserved by local writes and reads. For the call case, we prove the reflexivity by a strong
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lock step on calls. 4. Code: follows by straightforward induction on the result of instruction reflexivity.

The Block case follows immediately. 5. Phi: follows by case analysis; the Phis case is a induction over the

results of the reflexivity of Phi. 6. Ocfg: follows by a parameterized coinduction using the SimIter rule.

7. Cfg: follows immediately from the Ocfg case. 8. Function: follows from well-bracketedness of calls,

using the derived laws on frames pop and push. 9. Function definitions: follows from an induction on

function definitions and the well-formedness property over definitions that assumes uniqueness of function

addresses.

□

The proof of the fundamental theorem involves the use of SimIter and SimMrec in order to reason about

control-flow graphs and mutually-recursive control flow graphs. The case for code (list of instructions), phi

nodes, and aggregate data types follow by induction. The invariant Inv is crucial for managing ownership

over stack-allocated memory—given a code block, the allocated set of locations increase monotonically

and its ownership is kept track of by the public bijection, such that at function return the stack-allocated

resources can be released in-sync.

We use the fundamental theorem for proving a contextual closure result, as described below.

Theorem 5 (Contextual closure). If the context 𝐶 is well-formed and 𝑒𝑡 ⪯fun
log 𝑒𝑠 , then 𝐶 [𝑒𝑡 ] ⪯

funs
log 𝐶 [𝑒𝑠].

The well-formedness predicate states that addresses for functions are unique, the programs are well-

typed, and that operations do not values of size 0 to memory. With the proof of contextual closure and the

mutual recursion law, we prove the contextual adequacy result, as stated in Section 11.4.1.

In order to prove contextual refinement, we use the language-specific mutual recursion principle defined

in Figure 11.5. Given the proof of contextual closure using this mutual recursion law, we can now state the

contextual refinement result.

Definition 13 (Contextual refinement). 𝑒𝑡 ⊑ctx 𝑒𝑠 := ∀𝐶,wf 𝐶 ∧ wfprog (⟦𝐶 [𝑒𝑡 ]⟧𝜎𝑡 ) (⟦𝐶 [𝑒𝑠]⟧𝜎𝑠) ⇒

(⟦𝐶 [𝑒𝑡 ]⟧𝜎𝑡 ) ≈V↓ (⟦𝐶 [𝑒𝑠]⟧𝜎𝑠).

The well-formedness condition over programs (wf) states that the source program does not go wrong,

and that the program closed over with the context (⟦𝐶 [𝑒]⟧𝜎) is closed. The adequacy for contextual

refinement is as follows.
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Theorem 6 (Contextual adequacy). Given 𝑒𝑡 ⪯fun
log 𝑒𝑠 , then 𝑒𝑡 ⊑ctx 𝑒𝑠 .

The proof of contextual adequacy follows from the fundamental theorem, adequacy, and the language-

specific mutual recursion principle from Figure 11.5. This result of contextual adequacy allows us to lift

results about open function calls in the Velliris logic to a closing context in the Coq logic. For instance, this

is useful for lifting the result of verified example optimizations between code blocks shown in previous

sections (see Section 9.2.4, Section 9.3.4, and Section 9.4.2) to whole programs.

11.5 Related Work

LLVM IR Semantics. There is ample existing work that aims to build formal semantics for (oftentimes

just parts of) the LLVM IR. Notable examples include the prior versions of Vellvm [ZNMZ12, ZNMZ13],

Alive [LMNR15, MN17], Crellvm [KKS+18], and K-LLVM [LG20a] projects. There are also attempts to

characterize LLVM’s undefined behaviors [LKS+17], its concurrency semantics [CV17], and memory mod-

els [KHM+15a, LHJ+18b]. Of these, K-LLVM stands out as the most complete formal model of the LLVM IR

to date. Constructed using the K Framework [RS14, Ros17], K-LLVM is an executable reference specification

of nearly all of the LLVM IR constructs, including rich support of intrinsics. K-LLVM is high-fidelity enough

to pass a suite of standard LLVM IR unit tests. Li’s dissertation [Li20] introduces a notion of “per-location

simulation” with respect to the K-LLVM memory model semantics and uses it to establish the correctness of

a variety of program transformations that are expressible by Mansky, et al.’s Morpheus (a DSL for specifying

compiler optimizations) [MGGA16]. By comparison, the VIR semantics we present here is less complete

than K-LLVM: VIR has no support for concurrency, and supports only a few of the LLVM IR intrinsics,

for instance. However, Velliris, as a program logic embedded in Iris/Coq, is potentially more flexible than

the K-LLVM (one can draw on the full power of interactive theorem proving if necessary), and, to our

knowledge, the contextual adequacy result of this thesis has no analog in the K-LLVM setting.

Relational Separation Logics. Benton’s Relational Hoare Logic [Ben04] and Nanevski, et al.’s Relational

Hoare Type Theory [NBG13] have been shown to be useful for reasoning about program transformations and

properties such as information flow. Relational separation logic, introduced by Yang [Yan07], was developed

to specify and verify how two pointer programs are related. Since then, there have been variants of relational
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separation logics [EDM23, Gre23] which prove properties about contextual refinement, simulation, and

security. Most notably, both Trillium [TGS+21] and Simuliris [GSS+22] are relational separation logics

in the Iris framework, both focused on a concurrent operational semantics. On the other hand, Velliris

works with a sequential, monadic semantics based on the Interaction Trees framework, scaled up to the VIR

semantics. Other logics for simulations have mostly been developed in the context of using refinement for

program verification [Dan18, TJH17, SGG+21, LFS14, LF16, LF18]: the goal is to show that an implementation

of an abstract data type implements a specification, which is distinct from our goal of verifying program

optimizations.

140



Chapter 12

Conclusion

This dissertation builds a modular foundation for reasoning about program transformations in LLVM. In

Part I, we introduced VIR, a modular and executable semantics for a significant sequential subset of LLVM IR.

This approach is grounded in an Interaction Tree semantics, a structure that provides a more compositional

approach to defining language semantics while retaining the ability to extract an executable interpreter. In

Part II, we established a formal metatheory for the analysis of layered interpreters, offering an extensible

framework for lifting interpreters and structural rules. This framework characterizes interpretable monads

and introduces a relational reasoning system for assessing equivalences across interpretations. Lastly, in

Part III, we constructed a relational separation logic framework aimed at verifying program transformations

on VIR, offering a novel perspective on verifying transformations involving external calls.

12.1 Future work

12.1.1 Part I. VIR Semantics

Connecting the semantics to a compilation pass. One of the benefits of LLVM IR comes from its use

by various front-ends and back-ends: many modern languages such as C, Rust, and Haskell emit LLVM IR,

and LLVM IR can generate common instruction architectures sets such as PowerPC, Intel X86, MIPS, and

RISC-V. A line of future direction is to connect VIR to a front-end and/or a backend, fully connecting it to a

compiler pipeline and verifying a compilation pass, or a full stack of compilation. There is on-going work

on verifying a front-end pass through the HELIX project [Zal21], where a front-end for high-performance

and high-assurance numerical computing is compiled to the VIR framework.

Support for concurrency. Another direction for future work is adding concurrency to the VIR semantics.

This direction requires two significant components: (1) defining a concurrent semantics and reasoning

techniques for an Interaction Tree based semantics that can scale, and (2) developing a suitable weakmemory
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model for LLVM IR. As for the semantics, there has been developments of Interaction Tree-like semantics

for representing nondeterministic programs [CHH+23], and it is future work to determine whether this

new semantics is fit for representing concurrent LLVM IR programs.

12.1.2 Part II. A Layered Equational Framework.

Nondeterminism and probability Combining nondeterminism with other effects in a generic way is a

long standing problem in denotational semantics. The standard forms of distributive law is known to not hold

when combining nondeterminism and probability. Kozen and Silva [KS23] has recently shown a lightweight

construction of distributive laws when combining these two effects together using a multiset representation.

A direction for future work in eqmR is to explore the multiset representation for nondeterministic effects

using Kozen and Silva’s result.

Using different notions of equality. The interp function that is seen for intepretable monads can be

seen as a structure-preserving function, preserving certain structural laws across interpretation. The eqmR

approach can be seen as a setoid approach where a monad is paired with a certain notion of equivalence.

However, it may be more natural to work with a type theory with a more expressive notion of equivalnce

that can manipulate structure-preserving functions, such as in cubical type theory [CCHM16] and directed

type theory [WL20].

12.1.3 Part III. A Separation Logic Framework.

Verification of realistic optimization algorithm. A direction of future work for the separation logic

framework in Part III is the verification of a realistic optimization algorithm. An extensive case study

through a verification of a realistic optimization algorithm can showcase the effectiveness of the framework

and can help explore any limitations in the framework through verifying a realistic optimization pass.

Connecting the framework to analysis passes. An important part of LLVM IR optimizations is its

various analysis passes; most optimizations involve several analysis passes through the program. An

interesting avenue of future work is to develop a general verified framework for LLVM IR optimization

which connects to a software component that performs analysis passes.
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