
Irene	Yoon	
11/27/2023

Modular	Semantics	and	Metatheory	for	LLVM	IR
Dissertation	Defense	

University	of	Pennsylvania

1

Low	(low	consequence) High	(very	safety-critical)

Levels	of	assurance

radiation	therapy nuclear	power

space	vehiclesprinters

text	editors
train	schedule	display

navigation	system

2

Software	correctness
A	need	for	reliable,	high-assurance	software

Therac-25

Ariane-5

???

Formal	verification

3

•Interactive	theorem	proving	(e.g.	Coq,	Isabelle/HOL,	LEAN)	

(1)	Formal	specifications:	mathematical	specification	about	the	behavior	of	a	program	

(2)	Certified	software:	can	extract	a	certified	program	from	the	proof	of	formal	
specification	

•Success	stories:	CompCert	C	Compiler	[Leroy	et	al.],	sel4	OS	kernel	[Klein	et	al.]	

•CSmith	Random	testing	finds	bug	in	eleven	C	compilers	[Regehr	et	al	2011],	
except	for	CompCert:	errors	only	found	in	unverified	parts

Mathematically	proved	absence	of	bugs

The	cost-benefit	of	formal	verification

•Notoriously	labor-	and	expertise-	intensive	

•Alternatives:	lightweight	verification	(lower	cost,	lower	assurance)	

•property-based	testing,	refinement	types,	model	checking,	etc.

4

For	certain	high-assurance,	complex	software	(such	as	compilers),	formal	verification	is	
necessary	to	guarantee	the	absence	of	bugs	

(1)	What	should	we	verify?	

				Target	an	infrastructure	that	is	common	ground	for	as	many	software	as	possible	

(2)	How	do	we	verify	it?		

Modularity	is	good:	specify	and	verify	a	system	piece-by-piece,	reuse	when	possible!

A	modular	and	reusable	infrastructure	for	compiler	pipelines

5

front
ends

code
gen

?

`

optimizations/
transformations

typed SSA IR

analysis

LLVM

6

LLVM	Compiler	Infrastructure	[Lattner	et	al.]

6

front
ends

code
gen/jit

Modular	semantics	and	metatheory	for	LLVM	IR

(1)	Formal	semantics	

Characterizes	the	meaning	of	the	constructs	of	the	programming	language	in	
which	the	software	is	written	

(2)	Program	logic	

Formal	logic	for	expressing	and	proving	a	program	specification	

7

Modular	semantics	and	metatheory	
for	LLVM	IR

Part	I.	Semantics

Part	II.	General	meta-theory

Part	III.	Program	logic

Two	key	components	of	formally	verified	software

Bird's	eye	view
Contributions	and	overview

8

Part	I.	Semantics	

Part	II.	Metatheory	
eqmR,	Formal	reasoning	about	layered	monadic	interpreters		

[Yoon, Zakowski, Zdancewic] ICFP 2022

Part	III.	Program	Logic	
Velliris,	A	relational	separation	logic	for	LLVM	IR	

[Yoon, Spies, Gäher, Song, Dreyer, Zdancewic] In submission, 2023

*	:	all	results	mechanized	in	the	Coq	Proof	Assistant

VIR,	A	modular	and	executable	semantics	for	LLVM	IR	

[Zakowski, Beck, Yoon, Zaichuk, Zaliva, Zdancewic] ICFP 2021

Part	I:	A	Modular	Semantics	for	LLVM	IR

9

Part	I:	A	Modular	Semantics	for	LLVM	IR

joint	work	with		

Zakowski,	Beck,	Zaichuk,	Zaliva,	Zdancewic

LLVM	Compiler	Infrastructure	[Lattner	et	al.]

10

optimizations/
transformations

typed SSA IR

analysis

LLVM

front
ends

code
gen/jit

Part	I:	A	Modular	Semantics	for	LLVM	IR

LLVM	Intermediate	Representation
•LLVM	IR	
•Control-flow	Graphs:	
•Labeled	blocks			
•Straight-line	Code	
•Block	Terminators	
•Static	Single	Assignment	Form	(phi-nodes)	

•Types:		
•i64		⇒	64-bit	integers			
•i64*	⇒	pointer	

11

Part	I:	A	Modular	Semantics	for	LLVM	IR

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:SSA	≈	functional	program	[Appel	1998]		
+	

• Undefined	values	/	poison	
• Effects	

• structured	heap	load/store	
• system	calls	(I/O)	

• Types	&	Memory	Layout	
• structured,	recursive	types		
• type-directed	projection

The	Vellvm	Project	("Vellvm	1.0")

12

Part	I:	A	Modular	Semantics	for	LLVM	IR

optimizations/
transformations

VIR

analysis

Vellvm

[Zhao	and	Zdancewic	-	CPP	2012]	
Verified	computation	of	dominators

[Zhao	et	al.	-	POPL	2012]	

Formal	semantics	of	IR	+	verified	
SoftBound	

[Zhao	et	al.	-	POPL	2013]	

Verification	of	(v)mem2reg!

A	success,	but	monolithic

https://github.com/vellvm/vellvm-legacy

 G ⊢ pc, mem → pc′ , mem′

https://github.com/vellvm/vellvm-legacy

Vellvm	2.0:	A	redesign	of	Vellvm
A	Coq	formal	semantics	for	a	large,	sequential	fragment	of	LLVM	IR	coming	with:

13

•a	certified	interpreter	

•modularity	(extensible	events)	and	
compositionality	(denotational	semantics)	

•a	rich	equational	theory	

•an	equational	style	to	refinement	proofs ("Vellvm,	revamped")

Part	I:	A	Layered	Semantics	for	LLVM	IR

VIR:	an	Interaction	Tree	[Xia	et	al.]	based	semantics	for	LLVM	IR	

Interaction	Trees
Modular	and	executable	semantics

•Event-based	semantics	(modular)	

•Certified	interpreter	via	extraction	(executable)

14

Part	I:	A	Modular	Semantics	for	LLVM	IR

τ Read X

Write Y 0

τ τ τ

1

2

3

Observable
events

Silent step

A result

Potentially diverging
computationr

•Denotational	semantics	(compositional)

blk1++blk2

Benefits	of	Interaction-Tree	based	reasoning
Reasoning	about	control-flow

•Proof	of	block-merging	optimization	

•Reasoning	about	composing	control-
flow	operators	is	simple	

•Benefit	

Proof	involves	reasoning	only	about	
control	flow,	not	other	side-effects	
(e.g.	state,	exception..)

15

blk1

blk2

≈

Part	I:	A	Modular	Semantics	for	LLVM	IR

cfg cfg

Reference	Interpreter:	Executability

16

Parser Tiny OCaml driver
to crawl the tree

External calls
Debugging messages
Failure

120

Part	I:	A	Modular	Semantics	for	LLVM	IR

Tested	against	clang	over:	

•A	collection	of	unit	tests	
•A	handful	of	significant	programs	from	the	HELIX	frontend	
•Experiments	over	randomly	generated	programs	using	
QuickChick

Extracted
interpreter

Part	II:	A	Layered	Equational	Framework

17

Part	II:	A	Layered	Equational	Framework

joint	work	with		

Zakowski,	Zdancewic

intrinsics

propositional model

VIR

global environment

local environment

memory model

structural representation

itree E4 (* (* (*))) → Pℙ itree E4 (* (* (*)))

itree E5 (* (* (*))) → Pℙ

executable interpreter

EnvG

∋

Level 0

Level 1

Level 2

Level 3

Level 4

stateT (itree E1)

itree E0

EnvLstateT (itree E2)

MemstateT (itree E3)

*EnvG

* EnvL * EnvG

MemstateT (itree E4)* EnvL * EnvG

itree E4 (* (* (*))) MemstateT (itree E5)* EnvL * EnvG

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

itree VellvmE

τundefmodel τundefinterpret = 0τ

18

Part	II:	A	Layered	Equational	Framework

Scaling	up	monadic	interpreters

Free	monads	and	monadic	interpreters
Using	monadic	interpreters	to	model	programming	languages

19

Part	II:	A	Layered	Equational	Framework

itree

itree

itree

Interaction Tree

Layered	equivalences
Lifting	equivalences	and	structural	laws	across	interpretation

20

Part	II:	A	Layered	Equational	Framework

•There	exists	certain	properties	that	is	specific	to	
the	interpretation	(e.g.	effect-specific	laws	about	
local	environment,	heap)	

•However,	there	is	"redundant"	theory	for	
structural	properties	that	is	preserved	throughout	
interpretation	

•eqmR:	formalization	of	metatheory	which	is	
preserved	throughout	a	generic	notion	of	monadic	
interpretation,	i.e.	monad	laws,	iterative	laws,	
lifting	relations	across	interpretation

In	practice
Imp2Asm	compiler	correctness

21

Part	II:	A	Layered	Equational	Framework

Contributions
Extensible	metatheory	for	extensible	effects

22

Part	II:	A	Layered	Equational	Framework

•Metatheory	to	reduce	boilerplate	in	formal	
reasoning	about	layered	interpreters	

•Relational	Hoare	reasoning	and	lifting	of	
equivalences	across	interpretation	

•Generalization	of	automatic	injection	of	
handlers	

•Interpretable	monads	respecting	theory	of	
iteration	

•Coq	library	extending	InteractionTree	
framework	

•Case	study	(Imp2Asm	compiler	correctness)

Part	III:	A	Relational	Separation	Logic	Framework

23

Part	III:	A	Relational	Separation	Logic	Framework

joint	work	with		

Spies,	Gäher,	Song,	Dreyer,	Zdancewic

Benefits	of	Interaction-Tree	based	reasoning
Reasoning	about	control-flow

•Proof	of	block-merging	optimization	

•Reasoning	about	composing	control-
flow	operators	is	simple	

•Benefit	

Proof	involves	reasoning	only	about	
control	flow,	not	other	side-effects	
(e.g.	state,	exception..)

24

Part	III:	A	Relational	Separation	Logic	Framework

blk1++blk2

blk1

blk2

≈cfg cfg

The	need	for	a	state-aware	program	logic
Stateful	reasoning	in	VIR

25

Part	III:	A	Relational	Separation	Logic	Framework

et ≈R es

Two	programs	 	and	 	
(1)	Both	terminate	and	satisfy	the	postcondition	𝑅	over	the	result	of	the	
computation,	OR		
(2)	Both	diverge	in	simulation	with	each	other

et es

•Relational	reasoning	on	ITree-based	semantics

•Localize	reasoning	about	state	using	separation	logic

•Stateful	Hoare-style	reasoning

et es≈𝒬 ⟦⟧ ⟧⟦ σt σs{𝒫}et ≈ es{𝒬} := ∀σt, σs . 𝒫(σt, σs) ⇒

Given	a	stateful	interpretation	function	⟦	-	⟧	: itree (E +' F) A → stateT S (itree F) A

Separation	Logic	and	Iris
Local	stateful	reasoning	for	all!

26

Part	III:	A	Relational	Separation	Logic	Framework

•Iris	[Jung	et	al.]:	a	higher-order	
concurrent	separation	logic	framework	

•Highly	reusable	and	influential	in	
consolidating	variants	of	separation	
logics	

•Used	for	various	other	realistic	
semantics	(RustBelt,	RefinedC,	Iris-
WASM,	etc). [illustration	by	Ilya	Sergey]

The	genealogy	of	separation	logics

P * Q

•Separation	logic	[O.	Hearn	et	al.]

Solution:	Marry	benefits	of	VIR	and	Iris	

27

Part	III:	A	Relational	Separation	Logic	Framework

+ =

VIR

Semantics*

Iris

Program	logic

Velliris

Relational	separation	logic	for	LLVM	IR!

Related	
Simuliris:	A	Separation	Logic	Framework	for	Verifying	Concurrent	Program	Optimizations	

[Gäher	et	al.]	
Modular	Denotational	Semantics	for	Effects	with	Guarded	Interaction	Trees	[Frumin	et	al.]

Motivating	example:	loop	invariant	code	motion

28

Part	III:	A	Relational	Separation	Logic	Framework

•LLVM	optimizations	(1)	reorder	(or	modify/remove)	memory-related	instructions,	
and	(2)	often	make	certain	assumptions	about	external	calls	while	doing	so	

•By	adding	an	annotation	at	the	generated	LLVM	IR	for	the	C	code	above,	
one	can	specify	that	the	function	only	accesses	memory	through	its	arguments

"	function	can	only	affect	memory	
accessible	by	the	arguments	passed	on	

to	the	function	"

Memory	attributes	in	LLVM	IR

29

Part	III:	A	Relational	Separation	Logic	Framework

•LLVM	optimization	and	analysis	passes	often	use	
memory	attributes,	lightweight	specifications	about	
how	a	function	may	affect	memory

•Logical	interpretation	of	memory	attributes	using	
permission-based	ownership	

•Can	reason	about	reordering	across	calls	and	
transformations	that	take	advantage	of	memory	attributes

"	function	f	only	reads	from	arguments	
passed	on	to	the	function	"

(Typical)	Recipe	to	using	Iris

(1)	Ingredient:	a	small-step	semantics		

Given	a	small-step	semantics,	a	Hoare	triple	can	be	derived	via	the	typical	
weakest	precondition	model*	of	Iris	

			(technically,	a	Banach	guarded	fixpoint)*	

(2)	Ingredient:	an	abstract	view	on	state	(ghost	theory)	using	separation	logic	
resources	

		Iris	has	a	notion	of	resource	algebras	and	generic	constructions	of	resource	

algebras	suitable	for	read-only	map,	permission-based	ownership,	etc.

30

Part	III:	A	Relational	Separation	Logic	Framework

(2)	Ingredient:	an	abstract	view	on	state		

(ghost	theory)	using	separation	logic		

resources	
31

Part	III:	A	Relational	Separation	Logic	Framework

Typical	recipe

(1)	Ingredient:	a	small-step	semantics		

Given	a	small-step	semantics,	a	Hoare	
triple	can	be	derived	via	the	typical	
weakest	precondition	model*	of	Iris	

(technically,	a	Banach	guarded	fixpoint)*

Building	an	Iris	framework	for	VIR

(2)	Ingredient:	an	abstract	view	on	state		

(ghost	theory)	using	separation	logic		

resources	
32

Part	III:	A	Relational	Separation	Logic	Framework

Typical	recipe

(1)	Ingredient:	a	small-step	semantics		

Given	a	small-step	semantics,	a	Hoare	
triple	can	be	derived	via	the	typical	
weakest	precondition	model*	of	Iris	

(technically,	a	Banach	guarded	fixpoint)*

What	we	have	(and	need)

(1)	Ingredient:	ITree-based	semantics	

A	new	weakest	precondition	model*	of	
Iris	for	stateful	ITrees	

(technically,	a	Knaster-Tarski	mixed	
fixpoint)*

(2)	Ingredient:	A	ghost	theory	for	VIR	

			resources	

Building	an	Iris	framework	for	VIR

Contributions

Velliris:	A	relational	separation	logic	framework	for	
LLVM	IR

•A	relational,	coinductive	weakest	precondition	model	of	Iris	which	supports	a	
monadic	semantics	based	on	the	Interaction	Trees	framework	

•A	relational	separation	logic	and	ghost	theory	for	VIR	resources	

•Logical	interpretation	for	memory-relevant	attributes	

•Formalization	and	proof	of	contextual	refinement	

•Reasoning	principles	over	iteration	and	mutual	recursion	

•Case	study:	collection	of	simple	examples	and	proof	of	simple	loop	invariant	code	
motion	algorithm

33

Part	III:	A	Relational	Separation	Logic	Framework

VIR,	A	modular	and	
executable	semantics	for	
LLVM	IR

34

*	:	all	results	mechanized	in	the	Coq	Proof	Assistant

Future	Work

Summary	overview

Part	III
Velliris,	A	
relational	separation	
logic	for	LLVM	IR

Part	II
eqmR,	Formal	reasoning	
about	layered	monadic	
interpreters	

Part	I

•Connecting	to	a	back-end	(or	Rust/C	
front-end)	

•Extensive	case	study	(e.g.	verification	of	
realistic	optimization	algorithm)	

•Support	for	concurrency	&	relaxed	
memory	model

Thank	you!

Extra	slides

35

Quick	excerpt	of	logical	relation
(full	definition	on	the	thesis..)

36

Contextual	refinement
(full	definition	in	the	document)

37

Logical	relations,	continued.

Contextual	refinement

