Modular Semantics and Metatheory for LLVM IR Dissertation Defense

University of Pennsylvania

Irene Yoon 11/27/2023

Software correctness A need for reliable, high-assurance software

Levels of assurance

text editors

Low (low consequence) High (very safety-critical)

train schedule display

radiation therapy huclear power

Formal verification Mathematically proved absence of bugs

• Interactive theorem proving (e.g. Coq, Isabelle/HOL, LEAN) (1) Formal specifications: mathematical specification about the behavior of a program (2) Certified software: can extract a certified program from the proof of formal specification

- Success stories: CompCert C Compiler [Leroy et al.], sel4 OS kernel |Klein et al.] • CSmith Random testing finds bug in eleven C compilers [Regehr et al 2011],
	- except for CompCert: errors only found in unverified parts

The cost-benefit of formal verification

- Notoriously labor- and expertise- intensive
- Alternatives: lightweight verification (lower cost, lower assurance)
	- property-based testing, refinement types, model checking, etc.

For certain high-assurance, complex software (such as compilers), formal verification is necessary to guarantee the absence of bugs

(1) What should we verify?

Target an infrastructure that is <u>common ground</u> for as many software as possible

 (2) How do we verify it?

Modularity is good: specify and verify a system piece-by-piece, reuse when possible!

A modular and reusable infrastructure for compiler pipelines **ARM** ?front code (intel) ends gen SPĄRC Pawerpe **Allen** RISC-V

(1) Formal semantics Two key components of formally verified software

Characterizes the meaning of the constructs of the programming language in which the software is written

(2) Program logic

Formal logic for expressing and proving a program specification

Modular semantics and metatheory for LLVM IR

Modular semantics and metatheory for LLVM IR

Part I. Semantics

Part II. General meta-theory

Part III. Program logic

eqmR, Formal reasoning about layered monadic interpreters [**Yoon**, Zakowski, Zdancewic] ICFP 2022

Part III. Program Logic **Velliris**, A relational separation logic for LLVM IR [**Yoon**, Spies, Gäher, Song, Dreyer, Zdancewic] In submission, 2023

Bird's eye view Contributions and overview Part I. Semantics N Part II. Metatheory **A**

VIR, A modular and executable semantics for LLVM IR [Zakowski, Beck, **Yoon**, Zaichuk, Zaliva, Zdancewic] ICFP 2021

Part I: A Modular Semantics for LLVM IR

joint work with

Zakowski, Beck, Zaichuk, Zaliva, Zdancewic

Part I: A Modular Semantics for LLVM IR

LLVM Intermediate Representation

- LLVM IR
	- Control-flow Graphs:
		- Labeled blocks
		- Straight-line Code
		- Block Terminators
		- Static Single Assignment Form (phi-nodes)
- Types:
	- i64 \implies 64-bit integers
	- $i64^* \implies$ pointer

 $+$

- Undefined values / poison
- Effects
	- structured heap load/store
	- system calls (I/O)
- Types & Memory Layout
	- structured, recursive types
	- type-directed projection

Part I: A Modular Semantics for LLVM IR

Zhao and Zdancewic - CPP 2012 Verified computation of dominators

[Zhao et al. - POPL 2012]

Formal semantics of $IR +$ verified SoftBound

[Zhao et al. - POPL 2013] Verification of (v)mem2reg!

<https://github.com/vellvm/vellvm-legacy>

A success, but monolithic

 $G \vdash pc$, *mem* $\rightarrow pc'$, *mem'*

Vellvm 2.0: A redesign of Vellvm A Coq formal semantics for a large, sequential fragment of LLVM IR coming with:

VIR: an Interaction Tree |Xia et al.| based semantics for LLVM IR

- a certified interpreter
- modularity (extensible events) and compositionality (denotational semantics)
- a rich equational theory
- an equational style to refinement proofs ("Vellym, revamped")

Interaction Trees Modular and executable semantics

- Event-based semantics (modular)
- Certified interpreter via extraction (executable)

• Denotational semantics (compositional)

- Proof of block-merging optimization
- Reasoning about composing controlflow operators is simple
- •Benefit

Proof involves reasoning only about control flow, not other side-effects (e.g. state, exception..)

Benefits of Interaction-Tree based reasoning Reasoning about control-flow

Reference Interpreter: Executability

```
define i64 @factorial(i64 %n) {
  %1 = alloca i64
  %acc = alloca i64store i64 %n, i64* %1
  store i64 1, i64* % acc
  br label %start
start:
  \frac{2}{2} = load i64, i64* \frac{2}{3}%3 = icmp sgt i64 %2, 0br i1 %3, label %then, label %end
then:
  %4 = load i64, i64* % acc
  %5 = load i64, i64\star %1
  %6 = mul i64 %4, %5
  store i64 %6, i64* %acc%7 = load i64, i64* %1%8 = sub i64 %7, 1store i64 %8, i64* %1
  br label %start
lend:
  %9 = load i64, i64* % acc
  ret 164 %9
define i64 @main(i64 %argc, i8** %arcv) {
  %1 = alloca i64
  store i64 0, i64* %1
  %2 = \text{call} i64 (discrial (i64 5)
  ret i64 %2
```


- A collection of unit tests
- A handful of significant programs from the HELIX frontend • Experiments over randomly generated programs using
- QuickChick

Part I: A Modular Semantics for LLVM IR

Part II: A Layered Equational Framework

joint work with Zakowski, Zdancewic

Scaling up monadic interpreters

Part II: A Layered Equational Framework

Free monads and monadic interpreters Using monadic interpreters to model programming languages

Part II: A Layered Equational Framework

Layered equivalences Lifting equivalences and structural laws across interpretation

syntactic equivalence

 \approx

 \approx heap

free-monadic equivalence

equivalence up to

resulting environment

-
-
-

 \approx heap, env

• There exists certain properties that is specific to the interpretation (e.g. effect-specific laws about local environment, heap)

• However, there is "redundant" theory for structural properties that is preserved throughout interpretation

• eqmR: formalization of metatheory which is preserved throughout a generic notion of monadic interpretation, i.e. monad laws, iterative laws, lifting relations across interpretation

Imp2Asm compiler correctness

NEW PROOF:

intros; unfold interp_asm.

do 2 ibind. Apply the structural rules which are preserved throughout interpretation!

Contributions

Extensible metatheory for extensible effects

- Metatheory to reduce boilerplate in formal reasoning about layered interpreters
- Relational Hoare reasoning and lifting of equivalences across interpretation
	- Generalization of automatic injection of handlers
	- Interpretable monads respecting theory of iteration
- Coq library extending InteractionTree framework
- Case study (Imp2Asm compiler correctness)

Part III: A Relational Separation Logic Framework

joint work with

Spies, Gäher, Song, Dreyer, Zdancewic

- Proof of block-merging optimization
- Reasoning about composing controlflow operators is simple
- •Benefit

Proof involves reasoning only about control flow, not other side-effects (e.g. state, exception..)

Benefits of Interaction-Tree based reasoning Reasoning about control-flow

Part III: A Relational Separation Logic Framework

The need for a state-aware program logic Stateful reasoning in VIR

 $e_t \approx_R e_s$ Two programs e_t and e_s computation, OR • Relational reasoning on ITree-based semantics

- Stateful Hoare-style reasoning
- Localize reasoning about state using separation logic

Part III: A Relational Separation Logic Framework

(1) Both terminate and satisfy the postcondition R over the result of the (2) Both diverge in simulation with each other

 $\{\mathcal{P} \} e_t \approx e_s \{\mathcal{Q}\} := \forall \sigma_t, \sigma_s. \mathcal{P}(\sigma_t, \sigma_s) \Rightarrow \mathcal{Q} \circ \math$ Given a stateful interpretation function $\llbracket - \rrbracket$: itree (E +' F) A \rightarrow stateT S (itree F) A

Separation Logic and Iris Local stateful reasoning for all!

- Separation logic $|0$. Hearn et al. ${P} C {Q}$
{ $P * R} C {Q * R}$ *P* * *Q*
- Iris Jung et al. |: a higher-order concurrent separation logic framework
	- Highly reusable and influential in consolidating variants of separation logics
	- Used for various other realistic semantics (RustBelt, RefinedC, Iris-

The genealogy of separation logics

Solution: Marry benefits of VIR and Iris

Relational separation logic for LLVM IR!

Related

Simuliris: A Separation Logic Framework for Verifying Concurrent Program Optimizations [Gäher et al.] Modular Denotational Semantics for Effects with Guarded Interaction Trees [Frumin et al.]

Part III: A Relational Separation Logic Framework

Motivating example: loop invariant code motion

- void increment(int $*n$); $\mathbf{1}$ int get_int (int $*x$) { 2 int *n; int $i = 0$; n = &i; $3¹$ while $(*n < |*x|)$ { increment(n); } $\overline{4}$ return *n; $5⁵$ 6
-
-

" function can only affect memory declare i32 @increment(i32*) argmemonly accessible by the arguments passed on to the function "

• LLVM optimizations (1) reorder (or modify/remove) memory-related instructions, and (2) often make certain assumptions about external calls while doing so

• By adding an annotation at the generated LLVM IR for the C code above, one can specify that the function only accesses memory through its arguments

Memory attributes in LLVM IR

• LLVM optimization and analysis passes often use memory attributes, lightweight specifications about how a function may affect memory

define void $\left| \mathbb{Q} f(i32*) \right|$ readonly argmemonly { ... }

" function f only reads from arguments passed on to the function

- Logical interpretation of memory attributes using permission-based ownership
- •Can reason about reordering across calls and transformations that take advantage of memory attributes

(Typical) Recipe to using Iris

(1) Ingredient: a small-step semantics

weakest precondition model* of Iris

 $(\text{technically, a Banach guarded fixpoint})^*$

 (2) Ingredient: an abstract view on state (ghost theory) using separation logic resources

algebras suitable for read-only map, permission-based ownership, etc.

- Given a small-step semantics, a Hoare triple can be derived via the typical
	-

-
- Iris has a notion of resource algebras and generic constructions of resource

Building an Iris framework for VIR

Typical recipe

(2) Ingredient: an abstract view on state (ghost theory) using separation logic resources

Part III: A Relational Separation Logic Framework

(1) Ingredient: a small-step semantics

Given a small-step semantics, a Hoare triple can be derived via the typical weakest precondition model* of Iris

 $(technically, a Banach guarded fixpoint)$ *

Building an Iris framework for VIR

Typical recipe

(2) Ingredient: an abstract view on state (ghost theory) using separation logic resources

What we have (and need)

(1) Ingredient: a small-step semantics

Given a small-step semantics, a Hoare triple can be derived via the typical weakest precondition model* of Iris

(technically, a Banach guarded fixpoint)*

(technically, a Knaster-Tarski mixed fixpoint)*

(1) Ingredient: ITree-based semantics

A new weakest precondition model* of Iris for stateful ITrees

(2) Ingredient: A ghost theory for VIR resources

Contributions

Velliris: A relational separation logic framework for LLVM IR

- A relational, coinductive weakest precondition model of Iris which supports a monadic semantics based on the Interaction Trees framework
- A relational separation logic and ghost theory for VIR resources
- Logical interpretation for memory-relevant attributes
- Formalization and proof of contextual refinement
	- Reasoning principles over iteration and mutual recursion
- Case study: collection of simple examples and proof of simple loop invariant code motion algorithm

Summary overview

Future Work

- Connecting to a back-end (or Rust/C front-end)
- Extensive case study (e.g. verification of realistic optimization algorithm)
- Support for concurrency & relaxed memory model

Thank you!

: all results mechanized in the Coq Proof Assistant

Extra slides

Quick excerpt of logical relation (full definition on the thesis..)

 \mathbf{r}

Contextual refinement (full definition in the document)

Logical relations, continued.

 $f_t \leq_{\log(A_t,A_s,C)}^{fun} f_s \triangleq \forall i_t, i_s.$ $(|i_s| > 0 \rightarrow |i_t| > 0) \rightarrow$ Frame_{tgt} $i_t \rightarrow$ Frame_{src} $i_s \rightarrow$ checkout $(C) \rightarrow$ $(\mathcal{X}_{v_t,v_s \in args_t, args_s} V_U(v_t,v_s)) \ast \|f_t\|_{\text{fun}}^{\text{first}} \leq [f_s]\|_{\text{fun}}^{\text{first}} \{\lambda v_t, v_s, V_U(v_t,v_s) \ast \text{Frame}_{\text{tgt}} i_t \ast \text{Frame}_{\text{src}} i_s \ast \text{checkout}(C)\}$ $F_t \leq_{\log(A_t, A_s, C)}^{\text{funs}} F_s \triangleq \forall i, i_t, i_s, a_t, f_t, a_s, f_s. (|i_s| > 0 \rightarrow |i_t| > 0) \rightarrow F_t[i] = (a_t, f_t) \rightarrow F_s[i] = (a_s, f_s) \rightarrow F_s[i]$ $V_{\text{Dyn}}(a_t, a_s)$ * Frame_{tgt} i_t * Frame_{src} i_s * checkout(C) * $\mathcal{H}_{v_t,v_s \in \text{args}, \text{args}} \mathcal{V}_U(v_t, v_s) \rightarrow \llbracket f_t \rrbracket_{\text{fun}}^{\text{first}} \leq \llbracket f_s \rrbracket_{\text{fun}}^{\text{first}} \{\lambda v_t, v_s, \mathcal{V}_U(v_t, v_s) * \text{Frame}_{\text{tgt}} i_t * \text{Frame}_{\text{src}} i_s * \text{checkout}(C)\})$

Contextual refinement

Definition 6.1 (Contextual refinement) $(\llbracket C[e_t] \rrbracket \sigma_t) \approx_{\mathcal{V}^{\downarrow}} (\llbracket C[e_s] \rrbracket \sigma_s).$

THEOREM 6.2 (CONTEXTUAL ADEQUACT

$$
e_t \sqsubseteq_{\text{ctx}} e_s := \forall C, \text{wf } C \land \text{wf } \text{prog}([\llbracket C[e_t] \rrbracket \sigma_t) ([\llbracket C[e_s] \rrbracket \sigma_s) \Rightarrow
$$

Y). Given
$$
e_t \leq_{\log}^{fun} e_s
$$
, then $e_t \sqsubseteq_{\text{ctx}} e_s$.