
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Flambda2 Validator
Irene Yoon

INRIA
France

euisun.yoon@inria.fr

Chris Casinghino
Jane Street

USA
ccasinghino@janestreet.com

Abstract
This talk will describe a validation tool for Flambda2, an
optimizing middle-end for OCaml. Its optimizations are cen-
tered around inlining (replacing a function call with the
function body) and applying simplications that become pos-
sible after inlining. Although such a transformation sounds
innocuous, it is one of the most important—and tricky to
implement—optimizations in the compiler pipeline. We in-
crease confidence in Flambda 2’s optimizations by providing
a relatively small and declarative definition of reduction to
reduce optimized and unoptimized versions of the same pro-
gram to syntactically equivalent terms. The tool is functional
and can validate Flambda2’s optimizations for a substantial
fraction of the OCaml standard library, our main test suite.
ACM Reference Format:
Irene Yoon and Chris Casinghino. 2024. Flambda2 Validator. In
Proceedings of The 2024 OCaml Users and Developers Workshop
(OCaml Workshop ’24). ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
This talk will describe a validation tool for Flambda2 [1],
an optimizing middle-end for OCaml. Its optimizations are
centered around inlining (replacing a function call with the
function body) and applying simplications that become pos-
sible after inlining. Although such a transformation sounds
innocuous, it is one of the most important—and tricky to
implement—optimizations in the compiler pipeline. Both in-
lining and simplification are easy to get wrong in an effectful
language like OCaml, motivating the need for a validation
tool.
The core idea of our validation tool is to increase con-

fidence in Flambda 2’s optimizations by providing a rel-
atively small and declarative definition of reduction that
is sufficient to reduce optimized and unoptimized versions
of the same program to syntactically equivalent terms. We
define a lambda-calculus-like simplified core language for
the Flambda2 IR, called Flambda2 Core (F𝜆𝐶2). To validate
Flambda2’s optimization engine, we translate the original
and optimized programs to core, normalize both, and com-
pare them for 𝛼-equivalence. The approach is shown in Fig-
ure 1, where the double arrows illustrate components we
have implemented, as described further in Section 2.

OCaml Workshop ’24, September, 2024, Milan, Italy
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

source : F𝜆2

⟦source⟧ : F𝜆𝐶2⟦source⟧ : F𝜆𝐶2

⟦source⟧ : F𝜆𝐶2

result : F𝜆2

⟦result⟧ : F𝜆𝐶2

⟦result⟧ : F𝜆𝐶2

simplifier

translation translation

normalizationnormalization

𝛼-equivalence

Figure 1. Semantic equivalence for Flambda2

This talk will describe work in progress, and we look
forward to feedback and suggestions from the OCaml Work-
shop community. The tool is functional and can validate
Flambda2’s optimizations for a substantial fraction of the
OCaml standard library, our main test suite—see Section 3
for details. The goal of providing a declarative reduction
relation that captures these optimizaitons is so far a partial
success, we discuss some particular tricky transformations
in Section 4.

2 Methodology
We highlight the major differences between Flambda2 and
F𝜆𝐶2 and how we allow full substitution of terms in F𝜆𝐶2 .

2.1 Full expression subterms
F𝜆𝐶2 allows for full subexpressions in argument position, so
that there can be more aggressive inlining and substitution
in the normalization process. Since, for example, substitut-
ing an arbitrary let-bound variable for its body is not al-
ways sound in the presence of effects, the normalization for
F𝜆𝐶2 substitutes only when it preserves the behavior of the
program, which will be explained further in the talk.

2.2 Unifying closure binding of Flambda2
In Flambda2, there are two ways that a binding for a set of
closures can be declared. In Flambda2 Core, there is only
one syntactic form for this. In F𝜆𝐶2 , closure bindings are
written let Φ = closure f_id @f; closure g_id @g where
Φ is a variable corresponding to the whole set of closures.
Each of the function slots can be referred to by using a "slot
expression", which is a tuple referring to the set of closures
and the function slot. To refer to the function slot that stores
f_id, we write slot (Φ, @f). Having a uniform representation

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

OCaml Workshop ’24, September, 2024, Milan, Italy Irene Yoon and Chris Casinghino

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

of closures simplifies dealing with primitives that interact
with them (e.g., projecting from the closure environment).

2.3 Unifying recursive lambda expressions
In Flambda2, there are lambda-like expressions represent-
ing code blocks. Code blocks may be mutually recursive;
however, one can also have recursive function definitions
through local recursive continuations. In F𝜆𝐶2 , we unify the
representation of recursive lambda expressions so that the
normalization scheme can apply uniform treatment for deal-
ingwith recursive sets of closures. In F𝜆𝐶2 , local continuations
definitions cannot be recursive; they are lifted as a recur-
sive form of lambda. Note that the normalization does not
prevent divergence, as can be observed in the next section.

3 Results
Our primary testsuite for the validator has been the version
of the OCaml standard library in the Flambda2 version of
the OCaml compiler. We ran the compiler with validation
turned on for each file, subject to the limitations described
in Section 4. We ran the experiment on a modern AMD Epyc
7002 processor with a time limit of 20 minutes per file. On
this testsuite of 67 files, the validator successfully validates
45 files (67%), fails to validate 14 files (21%), and times out
on 8 files (12%).

Our experience to date suggests that the remaining valida-
tion failures are likely caused bymissing reduction rules. The
most common cause has been missing rules for particular
OCaml primitives, but in some cases we have needed to add
more complex rules to account for Flambda2’s optimizations,
and we discuss some interesting examples in Section 4.
The performance of the validator is bimodal. Of the 59

files on which it does not time out, 43 complete in under a
second, and only 5 require more than a minute. The speed
is not strongly correlated with program size—some large
files validate quickly and some smaller files time out. Based
on this performance profile, we suspect certain constructs
or patterns may cause the validator to loop or term size to
explode—further investigation is future work.

At present the validator comprises 7215 lines of code. This
includes the definition of F𝜆𝐶2 , translation from Flambda2
to F𝜆𝐶2 , normalization of F𝜆𝐶2 , and equivalence checking of
F𝜆𝐶2 terms. In the version of the compiler we are using for
testing, Flambda2 itself comprises 95457 lines of code (for a
fair comparison, we included the translation into Flambda2
from the previous IR, but not the translation out of Flambda2
to the next IR, and did not include tests in either case).
At less than 10% the size of Flambda2, we believe it is

reasonable to consider the validator a more declarative spec-
ification of correctness of the middle-end, despite some of
the complications discussed in the next section.

4 Limitations
The goal of this project is to increase confidence in Flambda
2’s optimizations by providing a relatively small and declar-
ative definition of reduction that is sufficient to reduce op-
timized and unoptimized versions of the same program to
syntactically equivalent terms. While the results from the
previous section show partial success, we have also encoun-
tered some optimizations performed by Flambda2 that are
challenging to validate with this technique. This section pro-
vides examples of optimizations we are not yet validating
successfully, or where validation required a more compli-
cated notion of reduction.

4.1 Cross-module inlining
Flambda2 can perform inlining not just within a compliation
unit, but also between compilation units when the compiled
version of a library is available. This cross-module inlining
does not create any fundamental theoretical obstacle for our
approach—we could in principle fully inline every function
whose definition is available, even if from another module.
However, this would be problematic for the performance of
the validator, as term sizes would grow massively.

Amore nuanced approachwould be to replicate Flambda2’s
cross-module inlining decisions, and only inline a function
body from another module if this was also done during the
actual optmization pass. Conveniently, Flambda2 maintains
an “inlining tree” data structure that records these inlining
decisions. However, we have not yet implemented this heuris-
tic, and our present results are collected with cross-module
inlining disabled.

4.2 Function argument introduction/elimination
Wehave encountered two transformations applied by Flambda2
that modify the number of arguments to functions. If these
functions are not eliminated by reduction, this defeats our
simple syntactic equivalence check.
The first such example concerns invariant arguments to

recursive continuations. Translation from OCaml’s Lambda
IR into Flambda2 creates recursive continuations both to
model recursive functions themselves and as the compilation
of loops. In the case that such a recursive continuation has
an invariant argument—an argument that does not change
from recursive call to recursive call—and the continuation
is applied only once, Flambda2 will eliminate the argument
from the continuation and simply substitute in the value
from the application site.

To handle this, we have included a “reduction” rule in our
system that applies a similar transformation to eliminate
arguments. This rule must do a deep analysis of the body
of the continuation to detect invariant arguments. As such,
this rule reduces the extent to which our reduction relation
serves as a simple declarative specification of correctness for
Flambda2.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Flambda2 Validator OCaml Workshop ’24, September, 2024, Milan, Italy

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

The second example concerns common subexpression elim-
ination (CSE), where Flambda2 attempts to eliminate dupli-
cated computations of pure expressions. If Flambda2 achieved
this goal by creating a simple let binding of the common
expression, our straightforward reduction rule for let bind-
ings would validate this optimization. However, as Flambda2
uses continuations for control flow, it instead propagates the
subexpression by adding an extra argument to the continu-
ation called by the code where the it is initially calculated.
This continuation therefore has an extra argument in the
optimized version.

It is possible the validator could accomodate this optimiza-
tion by applying a similar rule as we used to handle the
invariant arguments, where we observe this continuation
is always called with the same value and simply eliminate

the argument and substitute in the value. However, we have
not yet implemented such an optimization, and have instead
temporarily disabled the CSE optimization when running
validation.

5 Acknowledgements
This work was done in collaboration with Xavier Clerc, Mark
Shinwell, and Leo White at Jane Street. The authors also
received guidance from the Flambda 2 team at OCamlPro,
particularly Guillaume Bury, Pierre Chambart, Nathanaëlle
Courant, and Vincent Laviron.

References
[1] Flambda2 Team. 2023. Efficient OCaml compilation with Flambda 2.

OCaml Workshop.

3

	Abstract
	1 Introduction
	2 Methodology
	2.1 Full expression subterms
	2.2 Unifying closure binding of Flambda2
	2.3 Unifying recursive lambda expressions

	3 Results
	4 Limitations
	4.1 Cross-module inlining
	4.2 Function argument introduction/elimination

	5 Acknowledgements
	References

