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1 INTRODUCTION
Proofs are hard to modularize. This talk will describe how the use of equational reasoning, applied
to different interpretations of interaction trees [Xia et al. 2020], leads to modular proofs about
program semantics. Interaction trees take heavy influence from algebraic effects and handlers
[Plotkin and Pretnar 2013] to obtain modular reasoning principles; are used as a denotational
semantic domain for compositionality; and come equipped with combinators supplied with a rich
equational theory allowing one to reason up-to weak bisimulation. We present a case study of how
using ITrees leads to a crisp separation of concerns and ease of proof-writing in verifying a simple
compiler optimization proof.

2 INTERACTION TREES

CoInductive itree E A : Type
| Tau : itree E A → itree E A
| Ret : A → itree E A
| Vis : ∀ {R} (e: E R),

(R → itree E A) → itree E A

Fig. 1. Simplified Definition of ITree.
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Fig. 2. Interpretation levels and equivalences used at each
level.

Interaction Trees (ITrees) are a data structure for representing the computational behavior
of programs that interact with their environments. They are implemented as a coinductive type,
indexed by a return type R and type family of events E, itree E R, with three constructors. Retmodels
a pure computation returning the result r. Tau represents a silent internal step of the computation.
Vis contains a visible external event of type E R, and a continuation of type R → itree E A that
takes a response from the environment. Visible events represent an uninterpreted effect that needs
to be passed to the environment in order to be interpreted. To give semantics to events, an event
handler of type ∀ A, E A → M A may be defined for some monad M. This event handler gets lifted
to interpret the entire ITree into the target monad by the interp function. ITrees come equipped
with an equivalent up to tau (eutt) relation that generalizes the natural notion of bisimulation by
allowing a finite number of Tau constructors to be ignored. This relation relates trees that emit the
exact same visible events and return equal values.
Events and handlers induce levels of interpretations of a program, where distinct notions of

equivalences may be used for each level. We use a denotation and interpretation of ASM as an
example, as seen in Figure 2. Equality on the original ASM program is on syntactic equivalence,
while the denoted program is a representation of an open program through ITrees (referred to as
the ktree category, the Kleisli category of ITrees). This is interpreted into a state monad, where



the state is the mapping of values in memory and register locations. The equivalence on ITrees
(eutt) can be parameterized by a relation on return types: it is therefore a convenient tool to define
modular notions of equivalences at each level of interpretation that allow for arbitrary bisimulation
relations over computed states. Section 2 will give an overview of a peephole optimization and
how using the equational theory of ITrees leads to its modular verification.

3 CASE STUDY: PEEPHOLE OPTIMIZATION
Using ITrees, we can create denotational semantics for a wide variety of languages. With denota-
tional semantics, it is relatively easy to define notions of program equivalence for use in compiler
and optimization correctness. In this talk, we will discuss the semantics for a simple, model assembly
language ASM, and an equational proof of correctness of an optimization over ASM. We discuss
here specifically a simple set of peephole optimizations, a common optimization technique that
replaces a sequence of instructions to a semantically equivalent and more performant sequence of
instructions, but the technique we present is general.
ASM programs are represented as control flow subgraphs linking basic blocks by branching

labels and allowing for open programs to expose their interface. They are denoted as ITrees over
an event type AsmEv for memory and register operations.

This inert denotation gets interpreted through nested state monad transformers, implementing
respectively the local registers and the main memory. Uninterpreted denotations of ASM programs,
of type itree AsmEv R, are interpreted into the type regs → mem → itree EmptyE (regs * mem * R).
Albeit possibly divergent, these computations are now executable given initial register and heap
states, and return final register and heap states, as well as a return value of type R. Then we can
consider two such programs to be equivalent if, given initial register and memory values related by
some relation sim, they return trees related by eutt parameterized by sim. Our meta-theory ensures
that the equational theory provided by itrees is preserved through this interpretation.

In this talk, we will discuss how this denotation through ITrees allows us to use their equational
theory and rewriting techniques to prove the correctness of peephole optimizations. Our proof1
states that for any given peephole optimization, the optimized program and initial program have
equivalent denotations (i.e. the mapping of values in registers and heap coincide with each other).
The two-phased denotation, supported by the equational theory of ITrees, allows for a separation
of concern when establishing the behavioral equivalence between the original program and its opti-
mized counterpart: the reasoning about the control-flow is resolved through the itrees combinators,
while the semantic reasoning about state is delayed after interpretation. The proofs only use basic
rewriting using the equational theory library of ITrees and require no explicit coinduction, despite
being termination sensitive.

4 DISCUSSION
Monads, algebraic effects and handlers [Bauer and Pretnar 2015; Plotkin and Pretnar 2013], and
effects in type theory [Swierstra 2009] are well-studied subjects that have been used to reason about
effectful behavior in pure functional settings. Interaction Trees lift these methodologies to build
an extensible denotational semantics for possibly diverging programs in a termination-sensitive
interactive theorem prover. It is future work to explore the extensibility of ITrees, and recent efforts
in the Vellvm2 [Zhao et al. 2012], a verified LLVM [Lattner and Adve 2004] framework, is using
Interaction Trees to give a modular semantics to the LLVM compiler infrastructure.

1Available on GitHub: https://github.com/DeepSpec/InteractionTrees/tree/master/tutorial
2https://www.cis.upenn.edu/~stevez/vellvm/
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