Through the Interaction Forest: Advised by

Benjamin Pierce,

lrene Yoon

University of Pennsylvania MOde I"ng Concurrency "n Coq ¥ Steve Zdancewic

" ’ 1. Proot Framework
O W Ca n We ve r , ,y [1] Interaction Trees: Representing Effectful and Recursive Programs in

= 1 Cogq. Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregor
Concurrent programS? InteraCtlon Trees[] (ITrees) Matllecha% Benjamin C. Pierce, Steve Zdancewic. P?)PL 2020. o
General-purpose data structure representing recursive and impure programs in Cogq.
In the presence of concurrency, programs

must be viewed as components that CoInductive itree (E: Type > Type) (R: Type): Type :=

. | Ret (r: R) (* computation terminating with value r x)
INteract Wlth thelr environment. ThlS ‘ Tau (t: itree E R) (* “silent” tau transition with child t x)
intuition has developed into bisimulation, | Vis {A: Type} (e: E A) (k: A > itree E R). (x visible event e yielding an answer in A x)

an observational equational theory for

: " [View] computations as .

reasoning about concurrent Programs. a sequence of visible k1 a pure computations
: : ts — interactions —

Can we extend this theory and bring SyEn T Inesrarton® K b “_._‘ .

each of which might carry = silent divergence

mechanical verification of concurrent a response from the

porograms? To start, we need to inch environment back to the K1 C ‘—E—[
computation. ”

towards a verifiable representation of

concurrent models. We present an See Also:
. o Proof Powertool! /‘ | -
encoding of Milner’s Calculus of ® Partial Functions in Type Theory: Capretta’s "Delay"

Ko () effectful computation

Communicating Systems, a basic calculus 1. Free Monadic Structure = modular reasoning I(\j/\onad e E6 Cicolvoy & [shit TF Monad
- 2. Coinduction = models recursion ® Composable Eifects: Kiselyov & Ishii “Freer” Mona
for SynChmnOL.IS hanashakes, in Cog 3. Rich Equational Theory = easy client-side proofs ® Effectful Computations in Type Theory: Hancock,
using Interaction Trees. 4 Coot Extracti —» executable McBride’s general monad
- -0 EXTACion ® Algebraic Effects: Plotkin & Power
2. Concurrency Model 3. Denoting Model in Proot Framework

Mi I ner,s Cal Cu I us Of [2] A term model for CCS. Hennessy M.C.B., Plotkin G.D. (1980) In: Dembinski P.
- ° (eds) Mathematical Foundations of Computer Science 1980. MFCS 1980. Lecture

. . DenOtatlon Of ITrees Wlth CCS Notes in Computer Science, vol 88. Springer, Berlin, Heidelberg

Communicating Systems

We provide a denotation of CCS based on (% Acti .) Atomic Opel’atOl’S
. . - . ction operators.
A predecessor z-calculus, CCS is a basic ennesy and Plotkin’s model of CCS [2]. Definition send (1 : A) (k : ccs) := Nondeterministic operators are
calculus for synchronous handshakes. The The trickiest bit is the parallel composition Vis (Act (In 1)) (A _ > k). atomic. These operators are easy
primitive in the calculus is a process that can operator: how can we denote the Def n-?t-ion recv (1 : A) (k : ccs) := to define with [Trees, as they each
have ports that processes can communicate nondeterministic choices that occur when Vis (Act (Out 1)) (A _ > k). have separate event
through. processes are composed in parallel? (% Synchronous action (r) operator.) representatfns. Fo.r atomic]
P:=@ Empty Process Definition sync (1 : A) (k : ccs) := operators, the cont|.nuat|ons ©
' : Vis (S 1) (A k) not depend on the interpretation
ITree Representation 1oAY -7
| a. P Action P of the event.
| P,|P, Parallel Composition Definition ccs := ftree ccskE unit. Parallel Composition

| P, + P, Choice We write Z t; for the nondeterministic choice (sum), t; + 16, +...1;... [2].

Variable Naming and Scope

l

| v.P Restriction (Hide) We use locally nameless terms for actions (Labe), A parallel composition can be denoted as the composition of the sum of atomic
| 1P Process Generation (Bang) which is labelled on whether it is an input or output operators, and is detfined coinductively over the [Tree.
. action. : : :
o 1) Left/Right Reduce 2) Communication
As an example, here is a simple process: Variant Label: Type := , —
Hand In (l: 1dx) a.(r'|u) (t=a.r) (1]) {T.(t'\u') t=a.thu=a.u')
can handle an input action on . / : u) =
A=a.A } .P , Out (Ll: 1dx). (| u) = 7. (' u) (t=1.1) ¢ fail (otherwise)
port a and continue to A" LIR y (= Ret x) . .
. Reducing both term represents a
_ T can handle an output action Events - -
A'=b.A Ch and f o A fatt (otherwise) synchronous step. Note that the silent
n por N ntin . | - _ inisti
oft port brane CONtNUE 16 The.unlnte.rpreted events are: non deterrr?lms.tlc Reducing either the left or right term is step here (7) represents a synchronous
Processes can only communicate through a choice, action, and synchronous communication. defined symmetrically, where an atomic handshake (Sync), which is different from
bort with the same label with opposing Variant ccsE {A : Type}: Type > Type := operation is executed. the silently divergent ITree Tau nodes.
polarity. Or (n: nat): ccsE nat
Act: Label » ccsE unit Z) (Z)_Z((Z)) Z((Z)) (ZZ)
L u. | = : u.| | + L u. | + L ~U:
Given B=b.B’ and B'=¢.B’ Sync: idx > ccsE unit. (- = =\l \ . = ') 1g - & (ilety)
l] l]] l l]
. a synchronous Nondeterministic choice is represented by the This denotes the possible reduction strategies for the composition. The equational
A'|B—- A|B" communication between event Or, which indexes the possible set of theory in CCS states that any CCS process can be represented as a nondeterministic
A’ and B can occur. choices. sum at the top level, which allows us to use this denotation.

4. Veritying Our Encoding Future Work

® Extension of weak and strong
bisimulation in [Trees.

Trace Equivalence Trace Semantic Equivalence Theorem

To verify our denotation, we prove an equivalence between the ® Modeling m-calculus (message

Theorem trace_equiv:

trace of the operational semantics of CCS (the Labeled Transition (V proc trace, itree_trace proc trace » 3 proc' trace', passing) calculus
System(LTS)) and the trace semantics of ITrees. Showing trace lts_trace proc' trace' A trace = trace') A
equivalence is convenient, especially due to the presence of (V proc' trace', lts_trace proc' trace' > d proc trace, https://github.com/DeepSpec/

nondeterminism in our concurrency model. itree_trace proc_trace A trace = trace'). InteractionTrees/blob/ccs/examples/

DenoteCCS.v

