
(∑
i

ti) (∑
j

uj) = ∑
i

(ti
L (∑

j

uj)) + ∑
j

((∑
i

ti) R
uj) + (∑

i
∑

j

(ti |C uj))

Through the Interaction Forest:
Modeling Concurrency in Coq

Irene Yoon

Interaction Trees[1]

General-purpose data structure representing recursive and impure programs in Coq.

(ITrees)

Denotation of ITrees with CCS

Trace Equivalence Trace Semantic Equivalence Theorem

ITree Representation

Definition ccs := itree ccsE unit.

(* Action operators. *)
Definition send (l : A) (k : ccs) :=
 Vis (Act (In l)) (λ _ ⇒ k).
Definition recv (l : A) (k : ccs) :=
 Vis (Act (Out l)) (λ _ ⇒ k).

(* Synchronous action () operator. *)
Definition sync (l : A) (k : ccs) :=
 Vis (Sync l) (λ _ ⇒ k).

τ

https://github.com/DeepSpec/
InteractionTrees/blob/ccs/examples/

DenoteCCS.v

We use locally nameless terms for actions (Label),
which is labelled on whether it is an input or output
action.

Benjamin Pierce,
Steve Zdancewic

Advised by

CoInductive itree (E: Type → Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e: E A) (k: A → itree E R).

(* computation terminating with value r *)
(* “silent” tau transition with child t *)
(* visible event e yielding an answer in A *)

How can we verify
concurrent programs?

•Partial Functions in Type Theory: Capretta’s "Delay"
Monad

•Composable Effects: Kiselyov & Ishii "Freer" Monad
•Effectful Computations in Type Theory: Hancock,

McBride’s general monad
•Algebraic Effects: Plotkin & Power

Milner’s Calculus of
Communicating Systems

Parallel Composition

1) Left/Right Reduce 2) Communication

(t |L/R u) ={
α . (t′�|u)

τ . (t′�|u)
u

fail

(t = α . t′�)

(t = τ . t′�)
(t =)Ret x

()otherwise

(t |C u) =
τ . (t′�|u′�) (t = α . t′�, u = ᾱ . u′�)

{ fail otherwise()

[1] Interaction Trees: Representing Effectful and Recursive Programs in
Coq. Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, Steve Zdancewic. POPL 2020.

See Also:

1. Free Monadic Structure
2. Coinduction
3. Rich Equational Theory
4. Coq Extraction

Proof Powertool!

modular reasoning
models recursion
easy client-side proofs
executable

3. Denoting Model in Proof Framework

1. Proof Framework

2. Concurrency Model

In the presence of concurrency, programs
must be viewed as components that
interact with their environment. This
intuition has developed into bisimulation,
an observational equational theory for
reasoning about concurrent programs.

Can we extend this theory and bring
mechanical verification of concurrent
programs? To start, we need to inch
towards a verifiable representation of
concurrent models. We present an
encoding of Milner’s Calculus of
Communicating Systems, a basic calculus
for synchronous handshakes, in Coq
using Interaction Trees.

4. Verifying Our Encoding

[2] A term model for CCS. Hennessy M.C.B., Plotkin G.D. (1980) In: Dembiński P.
(eds) Mathematical Foundations of Computer Science 1980. MFCS 1980. Lecture
Notes in Computer Science, vol 88. Springer, Berlin, Heidelberg

Theorem trace_equiv:
 (proc trace, itree_trace proc trace → proc' trace',
 lts_trace proc' trace' trace trace')
 (proc' trace', lts_trace proc' trace' → proc trace,
 itree_trace proc_trace trace trace').

∀ ∃
∧ ≡ ∧

∀ ∃
∧ ≡

[

[

k1 a

k1 c

[k1 bτ τ
τ
τ τ τ τ

42

e1

τ e2 [k2 ()

. . . silent divergence

pure computations

effectful computation

A predecessor -calculus, CCS is a basic
calculus for synchronous handshakes. The
primitive in the calculus is a process that can
have ports that processes can communicate
through.

π

As an example, here is a simple process:

A ≡ a . A′�

B ≡ b . B′�

A′� ≡ b̄ . A

B′� ≡ c̄ . B

A′�|B τ A |B′�

Processes can only communicate through a
port with the same label with opposing
polarity.

can handle an input action on
port and continue to . a A′�

can handle an output action
on port and continue to . b A

Given

a synchronous
communication between

A’ and B can occur.

and ,

“ [View] computations as
a sequence of visible
events — interactions —
each of which might carry
a response from the
environment back to the
computation. “

P := ∅
| α . P

| P1 |P2

| P1 + P2

| ν . P

| !P

Empty Process

 Action

Parallel Composition

Choice

Restriction (Hide)

Process Generation (Bang)

We provide a denotation of CCS based on
Hennesy and Plotkin’s model of CCS [2].

The trickiest bit is the parallel composition
operator: how can we denote the
nondeterministic choices that occur when
processes are composed in parallel?

Variant ccsE {A : Type}: Type → Type :=
| Or (n: nat): ccsE nat
| Act: Label → ccsE unit
| Sync: idx → ccsE unit.

The uninterpreted events are: non-deterministic
choice, action, and synchronous communication.

We write for the nondeterministic choice (sum), [2].∑
i

ti t1 + t2 + . . . ti . . .

Nondeterministic operators are
atomic. These operators are easy
to define with ITrees, as they each
have separate event
representations. For atomic
operators, the continuations do
not depend on the interpretation
of the event.

A parallel composition can be denoted as the composition of the sum of atomic
operators, and is defined coinductively over the ITree.

This denotes the possible reduction strategies for the composition. The equational
theory in CCS states that any CCS process can be represented as a nondeterministic
sum at the top level, which allows us to use this denotation.

Reducing either the left or right term is
defined symmetrically, where an atomic
operation is executed.

Reducing both term represents a
synchronous step. Note that the silent
step here () represents a synchronous
handshake (Sync), which is different from
the silently divergent ITree Tau nodes.

τ

To verify our denotation, we prove an equivalence between the
trace of the operational semantics of CCS (the Labeled Transition
System(LTS)) and the trace semantics of ITrees. Showing trace
equivalence is convenient, especially due to the presence of
nondeterminism in our concurrency model.

University of Pennsylvania

Future Work
• Extension of weak and strong

bisimulation in ITrees.

• Modeling -calculus (message
passing) calculus

π

Variant Label: Type :=
| In (l: idx)
| Out (l: idx).

Variable Naming and Scope

Events

Nondeterministic choice is represented by the
event Or, which indexes the possible set of
choices.

Atomic Operators

